Soil loosening and drainage of structurally unstable silty soils

Secondary drainage treatments are carried out with the objective of enhancing the performance of permanent piped schemes. In this study, a drainage experiment was designed to investigate the effect of soil loosening on storm water redistribution in a structurally unstable silt soil following the ins...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 121; no. 1; pp. 63 - 83
Main Authors Twomlow, Stephen J., Parkinson, Robert J., Reid, Ian
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.1990
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Secondary drainage treatments are carried out with the objective of enhancing the performance of permanent piped schemes. In this study, a drainage experiment was designed to investigate the effect of soil loosening on storm water redistribution in a structurally unstable silt soil following the installation of underdrainage. Results show that even though loosening reduced dry bulk density between 0.2 and 0.4 m depth by 15%, with a 270% increase in transmission pores (> 60 μm equivalent diameter) at the interface of what was the cultivated and undisturbed soil, drainage efficiency was not enhanced, as might have been expected from the 10- to 20-fold increase in hydraulic conductivity. Loosening not only lengthens the median time of concentration by 0.42 and 0.33 h for simple and secondary winter storms, respectively, but also caused lower peak discharges when compared with unloosened soil. Measurements of soil water energetics reveal that a greater proportion of rainfall is diverted into the loosened zone below the plough layer and detained there, reducing the 24 h drainage efficiency. On a seasonal timescale, the greater storage between 0.2 and 0.4 m depth causes a 6.3% increase in the winter mean water content, and means that the rooting environment of the loosened soil is wetter prior to a rainstorm. Consequently, in wet autumns and springs, loosened soils will be more susceptible to structural damage by animal poaching or the traffic of farm machinery.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1694
1879-2707
DOI:10.1016/0022-1694(90)90225-M