Real-Time Measurement of the Contractile Forces of Self-Organized Cardiomyocytes on Hybrid Biopolymer Microcantilevers

We present a microfabricated hybrid biopolymer microcantilever, in which the contractile force of self-organized cardiomyocytes can be measured and studied, as a prototype for the development of cell-driven actuators. The microcantilever is made of a flexible, transparent, biocompatible poly(dimethy...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 77; no. 20; pp. 6571 - 6580
Main Authors Park, Jungyul, Ryu, Jaewook, Choi, Seung Kyu, Seo, Eunseok, Cha, Jae Min, Ryu, Seokchang, Kim, Jinseok, Kim, Byungkyu, Lee, Sang Ho
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.10.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a microfabricated hybrid biopolymer microcantilever, in which the contractile force of self-organized cardiomyocytes can be measured and studied, as a prototype for the development of cell-driven actuators. The microcantilever is made of a flexible, transparent, biocompatible poly(dimethylsiloxane) substrate, using a simple microfabrication technique. Seeding and culturing cardiomyocytes on the specific cantilever allows us to perform highly sensitive, quantitative, and noninvasive measurement of the contractile force of the self-organized cells in real time. The motions of the microcantilever showed good agreement with an analytical solution based on Stoney's equation and finite element modeling (FEM) of the hybrid system. Immunostaining of the cells on the hybrid system showed continuous high-order coalignment of actin filaments and parallel sarcomeric organization in the direction of the longitudinal axis of the microcantilever without structural constraints, such as microgrooves or lines, and proved our FEM and the synchronous contraction of cardiomyocytes. The presented device should facilitate measurement of the contractile force of self-organized cardiomyocytes on a specific area, which may help the understanding of heart failure and the design of optimal hybrid biopolymer actuators, as well as assist development of a microscale cell-driven motor system.
Bibliography:ark:/67375/TPS-J5LBDK5C-L
istex:B98FAEED886C774D767D38551306145D5E55ADE1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0507800