A Proteomic Approach for Quantitation of Phosphorylation Using Stable Isotope Labeling in Cell Culture

Posttranslational modifications are major mechanisms of regulating protein activity and function in vertebrate cells. It is essential to obtain qualitative information about posttranslational modification patterns of proteins to understand signal transduction mechanisms in greater detail. However, i...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 75; no. 22; pp. 6043 - 6049
Main Authors Ibarrola, Nieves, Kalume, Dario E, Gronborg, Mads, Iwahori, Akiko, Pandey, Akhilesh
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.11.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Posttranslational modifications are major mechanisms of regulating protein activity and function in vertebrate cells. It is essential to obtain qualitative information about posttranslational modification patterns of proteins to understand signal transduction mechanisms in greater detail. However, it is equally important to measure the dynamics of posttranslational modifications such as phosphorylation to approach signaling networks from a systems biology perspective. Despite a number of advances, methods to quantitate posttranslational modifications remain difficult to implement due to a number of factors including lack of a generic method, elaborate chemical steps, and requirement for large amounts of sample. We have previously shown that stable isotope-containing amino acids in cell culture (SILAC) can be used to differentially label growing cell populations for quantitation of protein levels. In this report, we extend the use of SILAC as a novel proteomic approach for the relative quantitation of posttranslational modifications such as phosphorylation. We have used SILAC to quantitate the extent of known phosphorylation sites as well as to identify and quantitate novel phosphorylation sites.
Bibliography:ark:/67375/TPS-3HWRKZ13-1
istex:7292EF4F9B08ECA6E2FB954B6D88B92E7E825F9D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0003-2700
1520-6882
DOI:10.1021/ac034931f