Measuring Electric Fields and Noncovalent Interactions Using the Vibrational Stark Effect

Over the past decade, we have developed a spectroscopic approach to measure electric fields inside matter with high spatial (<1 Å) and field (<1 MV/cm) resolution. The approach hinges on exploiting a physical phenomenon known as the vibrational Stark effect (VSE), which ultimately provides a d...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 48; no. 4; pp. 998 - 1006
Main Authors Fried, Stephen D, Boxer, Steven G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Over the past decade, we have developed a spectroscopic approach to measure electric fields inside matter with high spatial (<1 Å) and field (<1 MV/cm) resolution. The approach hinges on exploiting a physical phenomenon known as the vibrational Stark effect (VSE), which ultimately provides a direct mapping between observed vibrational frequencies and electric fields. Therefore, the frequency of a vibrational probe encodes information about the local electric field in the vicinity around the probe. The VSE method has enabled us to understand in great detail the underlying physical nature of several important biomolecular phenomena, such as drug–receptor selectivity in tyrosine kinases, catalysis by the enzyme ketosteroid isomerase, and unidirectional electron transfer in the photosynthetic reaction center. Beyond these specific examples, the VSE has provided a conceptual foundation for how to model intermolecular (noncovalent) interactions in a quantitative, consistent, and general manner. The starting point for research in this area is to choose (or design) a vibrational probe to interrogate the particular system of interest. Vibrational probes are sometimes intrinsic to the system in question, but we have also devised ways to build them into the system (extrinsic probes), often with minimal perturbation. With modern instruments, vibrational frequencies can increasingly be recorded with very high spatial, temporal, and frequency resolution, affording electric field maps correspondingly resolved in space, time, and field magnitude. In this Account, we set out to explain the VSE in broad strokes to make its relevance accessible to chemists of all specialties. Our intention is not to provide an encyclopedic review of published work but rather to motivate the underlying framework of the methodology and to describe how we make and interpret the measurements. Using certain vibrational probes, benchmarked against computer models, it is possible to use the VSE to measure absolute electric fields in arbitrary environments. The VSE approach provides an organizing framework for thinking generally about intermolecular interactions in a quantitative way and may serve as a useful conceptual tool for molecular design.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0001-4842
1520-4898
DOI:10.1021/ar500464j