Ultra-Low-Voltage Self-Body Biasing Scheme and Its Application to Basic Arithmetic Circuits
The gate level body biasing (GLBB) is assessed in the context of ultra-low-voltage logic designs. To this purpose, a GLBB mirror full adder is implemented by using a commercial 45 nm bulk CMOS triple-well technology and compared to equivalent conventional zero body-biased CMOS and dynamic threshold...
Saved in:
Published in | VLSI Design Vol. 2015; pp. 49 - 58 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi Limiteds
01.01.2015
Hindawi Publishing Corporation John Wiley & Sons, Inc Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The gate level body biasing (GLBB) is assessed in the context of ultra-low-voltage logic designs. To this purpose, a GLBB mirror full adder is implemented by using a commercial 45 nm bulk CMOS triple-well technology and compared to equivalent conventional zero body-biased CMOS and dynamic threshold voltage MOSFET (DTMOS) circuits under different running conditions. Postlayout simulations demonstrate that, at the parity of leakage power consumption, the GLBB technique exhibits a significant concurrent reduction of the energy per operation and the delay in comparison to the conventional CMOS and DTMOS approaches. The silicon area required by the GLBB full adder is halved with respect to the equivalent DTMOS implementation, but it is higher in comparison to conventional CMOS design. Performed analysis also proves that the GLBB solution exhibits a high level of robustness against temperature fluctuations and process variations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1065-514X 1563-5171 |
DOI: | 10.1155/2015/540482 |