Glider observations of enhanced deep water upwelling at a shelf break canyon: A mechanism for cross‐slope carbon and nutrient exchange

Using underwater gliders we have identified canyon driven upwelling across the Celtic Sea shelf‐break, in the vicinity of Whittard Canyon. The presence of this upwelling appears to be tied to the direction and strength of the local slope current, which is in itself highly variable. During typical su...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Oceans Vol. 121; no. 10; pp. 7575 - 7588
Main Authors Porter, M., Inall, M. E., Hopkins, J., Palmer, M. R., Dale, A. C., Aleynik, D., Barth, J. A., Mahaffey, C., Smeed, D. A.
Format Journal Article
LanguageEnglish
Published 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using underwater gliders we have identified canyon driven upwelling across the Celtic Sea shelf‐break, in the vicinity of Whittard Canyon. The presence of this upwelling appears to be tied to the direction and strength of the local slope current, which is in itself highly variable. During typical summer time equatorward flow, an unbalanced pressure gradient force and the resulting disruption of geostrophic flow can lead to upwelling along the main axis of two small shelf break canyons. As the slope current reverts to poleward flow, the upwelling stops and the remnants of the upwelled features are mixed into the local shelf water or advected away from the region. The upwelled features are identified by the presence of sub‐pycnocline high salinity water on the shelf, and are upwelled from a depth of 300 m on the slope, thus providing a mechanism for the transport of nutrients across the shelf break onto the shelf. Key Points: Gliders have been used to monitor along canyon flow, identifying upwelled cores Intra‐seasonal reversals in the slope current have been identified in a long term ADCP record Variability in upwelling is associated with variability in the slope current
ISSN:2169-9275
2169-9291
DOI:10.1002/2016JC012087