Discovery of New Inhibitors of Hepatitis C Virus NS3/4A Protease and Its D168A Mutant

Hepatitis C virus (HCV) is a human pathogen with high morbidity. The HCV NS3/4A protease is essential for viral replication and is one of the top three drug targets. Several drugs targeting the protease have been developed, but drug-resistant mutant strains emerged. Here, we screened a library and s...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 4; no. 16; pp. 16999 - 17008
Main Authors Meewan, Ittipat, Zhang, Xingquan, Roy, Suchismita, Ballatore, Carlo, O’Donoghue, Anthony J, Schooley, Robert T, Abagyan, Ruben
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.10.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hepatitis C virus (HCV) is a human pathogen with high morbidity. The HCV NS3/4A protease is essential for viral replication and is one of the top three drug targets. Several drugs targeting the protease have been developed, but drug-resistant mutant strains emerged. Here, we screened a library and synthesized a novel class of small molecules based on a tryptophan derivative scaffold identified as HCV NS3/4A protease inhibitors that are active against both wild type and mutant form of the protease. Only the compounds with predicted binding poses not affected by the most frequent mutations in the active site were selected for experimental validation. The antiviral activities were evaluated by replicon and enzymatic assays. Twenty-two compounds were found to inhibit HCV with EC50 values ranging between 0.64 and 63 μM with compound 22 being the most active. In protease assays, 22 had a comparable inhibition profile for the common mutant HCV GT1b D168A and the wild-type enzyme. However, in the same assay, the potency of the approved drug, simeprevir, decreased 5.7-fold for the mutant enzyme relative to the wild type. The top three inhibitors were also tested against four human serine proteases and were shown to be specific to the viral protease. The fluorescence-based cell viability assay demonstrated a sufficient therapeutic range for the top three candidates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b02491