Psilocybin: Characterization of the Metastable Zone Width (MSZW), Control of Anhydrous Polymorphs, and Particle Size Distribution (PSD)

Psilocybin, a serotonergic agonist, was granted a “breakthrough therapy” status by the Food and Drug Administration for clinical trials involving major depressive disorder and treatment-resistant depression. The direct phosphorylation of psilocin to psilocybin that uses a fast crystallization associ...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 7; no. 6; pp. 5429 - 5436
Main Authors Kargbo, Robert B, Sherwood, Alexander M, Meisenheimer, Poncho, Lenoch, Kelsey, Abebe, Solomon
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.02.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Psilocybin, a serotonergic agonist, was granted a “breakthrough therapy” status by the Food and Drug Administration for clinical trials involving major depressive disorder and treatment-resistant depression. The direct phosphorylation of psilocin to psilocybin that uses a fast crystallization associated with a kinetically controlled process resulted in a smaller particle size distribution. Herein, the measurement of the metastable zone width (MSZW) and nucleation induction enabled a thermodynamically controlled crystallization process, which leads to the formation of a crystal structure with stronger interactions, controlled particle size distribution (PSD), and improved impurity profile. Employing a high-resolution inline microscopy viewer allowed the real-time monitoring of the crystallization process and the measurement of the particle size. We also present a comprehensive study of the formation of polymorph B (trihydrate), polymorph A (anhydrate), and polymorph H (anhydrate) using water recrystallization, which indicates that the formation of polymorph B (trihydrate) is independent of the crystallization method. However, polymorphs A and H are dependent on the mode of drying: drying at room temperature under vacuum gives rise to mainly polymorph A, and when heated even at relatively low temperatures, a mixture of polymorphs A and H beings to form.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c06708