Molecular Dynamics Simulations of the Thermal Decomposition of 3,4-Bis(3-nitrofurazan-4-yl)furoxan
When stimulated, for example, by a high temperature, the physical and chemical properties of energetic materials (EMs) may change, and, in turn, their overall performance is affected. Therefore, thermal stability is crucial for EMs, especially the thermal dynamic behavior. In the past decade, signif...
Saved in:
Published in | ACS omega Vol. 6; no. 49; pp. 33470 - 33481 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.12.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | When stimulated, for example, by a high temperature, the physical and chemical properties of energetic materials (EMs) may change, and, in turn, their overall performance is affected. Therefore, thermal stability is crucial for EMs, especially the thermal dynamic behavior. In the past decade, significant efforts have been made to study the thermal dynamic behavior of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF), one of the new high-energy-density materials (HEDMs). However, the thermal decomposition mechanism of DNTF is still not specific or comprehensive. In this study, the self-consistent-charge density-functional tight-binding method was combined with molecular dynamics (MD) simulations to reveal the differences in the thermal decomposition of DNTF under four heating conditions. The O–N (O) bond would fracture first during DNTF initial thermal decomposition at medium and low temperatures, thus triggering the cracking of the whole structure. At 2000 and 2500 K, NO2 loss on outer ring I is the fastest initial thermal decomposition pathway, and it determines that the decomposition mechanism is different from that of a medium-low temperature. NO2 is found to be the most active intermediate product; large molecular fragments, such as C2N2O, are found for the first time. Hopefully, these results could provide some insights into the decomposition mechanism of new HEDMs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.1c04166 |