Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process

In this paper, we report a simple two-step approach for the synthesis of large graphene oxide (GO) sheets with lateral dimensions of ≈10 μm or greater. The first step is a pretreatment step involving electrochemical exfoliation of graphite electrode to produce graphene in a mixture of H2SO4 and H3PO...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 3; no. 8; pp. 10233 - 10242
Main Authors Kumar, Navneet, Srivastava, Vimal Chandra
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.08.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we report a simple two-step approach for the synthesis of large graphene oxide (GO) sheets with lateral dimensions of ≈10 μm or greater. The first step is a pretreatment step involving electrochemical exfoliation of graphite electrode to produce graphene in a mixture of H2SO4 and H3PO4. The second step is the oxidation step, where oxidation of exfoliated graphene sheets was performed using KMnO4 as the oxidizing agent. The oxidation was carried out for different times ranging from 1 to 12 h at ∼60 °C. Prepared GO batches were characterized using a number of spectroscopy and microscopy techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–visible spectroscopy. Raman and thermogravimetric analysis techniques were used to study the degree of oxidation in the as-synthesized GO batches. The UV–visible absorption spectrum showed an intense peak at 230 nm and an adjacent band at 300 nm corresponding to π–π* and n−π* transitions in all samples. Normalized FTIR plots were used to calculate the relative percentages of oxygen-containing functional groups, which were found to be maximum in GO (6 h). Boehm titration was used to quantify the functional groups present on the GO surface. Overall GO sheets obtained after 6 h of oxidation, GO (6 h), were found to be the best. XRD pattern of GO (6 h) revealed a characteristic peak at 2θ = 8.88°, with the corresponding interplanar spacing between the layers being 0.995 nm, which is among the best with respect to the previous methods reported in the literature. Raman spectroscopy showed that the degree of defect (I D/I G) area ratio for GO (6 h) was 1.24, which is higher than that obtained for GO (1.18) prepared by widely used Marcano’s approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.8b01283