Decomposition of Chemical Warfare Agent Simulants Utilizing Pyrolyzed Cotton Balls as Wicks

A simple method to improve the thermal decomposition of chemical warfare agent simulants is reported. Utilizing pyrolyzed cotton balls as a substrate for the delivery of an incendiary agent into a bulk volume of chemical warfare agent simulants, significant enhancements in the burning rates were ach...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 5; no. 32; pp. 20051 - 20061
Main Authors Lagasse, Bryan A, McCann, Laura, Kidwell, Timothy, Blais, Matthew S, Garcia, Carlos D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.08.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:A simple method to improve the thermal decomposition of chemical warfare agent simulants is reported. Utilizing pyrolyzed cotton balls as a substrate for the delivery of an incendiary agent into a bulk volume of chemical warfare agent simulants, significant enhancements in the burning rates were achieved with respect to either other wicks or the incendiary agent by itself. To perform the decomposition experiments and follow the reaction in real time, while still addressing the important safety considerations related to experiments involving chemical warfare agent simulants and incendiary agents, a simple instrument was assembled in a laboratory hood, where all experiments were performed. Under ambient conditions, this method was able to enhance the decomposition of simulants for both sulfur mustard (HD) and sarin (GB) chemical warfare agents. Overall, the proposed approach represents one of the simplest and more cost-effective ways to improve the decomposition of these dangerous substances, presenting options for field expedient and low-cost processes that could be applied in the near future to the safe destruction of an actual CWA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c01619