Surface-Engineered Nanostructure-Based Efficient Nonpolar GaN Ultraviolet Photodetectors

Surface-engineered nanostructured nonpolar (112̅0) gallium nitride (GaN)-based high-performance ultraviolet (UV) photodetectors (PDs) have been fabricated. The surface morphology of a nonpolar GaN film was modified from pyramidal shape to flat and trigonal nanorods displaying facets along different...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 3; no. 2; pp. 2304 - 2311
Main Authors Mishra, Monu, Gundimeda, Abhiram, Krishna, Shibin, Aggarwal, Neha, Goswami, Lalit, Gahtori, Bhasker, Bhattacharyya, Biplab, Husale, Sudhir, Gupta, Govind
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surface-engineered nanostructured nonpolar (112̅0) gallium nitride (GaN)-based high-performance ultraviolet (UV) photodetectors (PDs) have been fabricated. The surface morphology of a nonpolar GaN film was modified from pyramidal shape to flat and trigonal nanorods displaying facets along different crystallographic planes. We report the ease of enhancing the photocurrent (5.5-fold) and responsivity (6-fold) of the PDs using a simple and convenient wet chemical-etching-induced surface engineering. The fabricated metal–semiconductor–metal structure-based surface-engineered UV PD exhibited a significant increment in detectivity, that is, from 0.43 to 2.83 (×108) Jones, and showed a very low noise-equivalent power (∼10–10 W Hz–1/2). The reliability of the nanostructured PD was ensured via fast switching with a response and decay time of 332 and 995 ms, which were more than five times faster with respect to the unetched pyramidal structure-based UV PD. The improvement in device performance was attributed to increased light absorption, efficient transport of photogenerated carriers, and enhancement in conduction cross section via elimination of recombination/trap centers related to defect states. Thus, the proposed method could be a promising approach to enhance the performance of GaN-based PD technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.7b02024