Density-Functional Theory Investigation of Barite Scale Inhibition Using Phosphonate and Carboxyl-Based Inhibitors

Scale deposition is a critical issue in oil and gas exploration and production processes, causing significant blocking in tubing and consequently flow assurance and economic losses. Most studies addressing the scale formation have been limited on the experimental impact of different variables on sca...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 5; no. 51; pp. 33323 - 33328
Main Authors Al Hamad, Mohammad, Al-Sobhi, Saad Ali, Onawole, Abdulmujeeb T, Hussein, Ibnelwaleed A, Khraisheh, Majeda
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 29.12.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Scale deposition is a critical issue in oil and gas exploration and production processes, causing significant blocking in tubing and consequently flow assurance and economic losses. Most studies addressing the scale formation have been limited on the experimental impact of different variables on scale formation. In this work, the inhibition of barite scale deposition was investigated by employing molecular simulations for three different scale inhibitors, namely, polyaspartic acid (PASP), nitrilotrimethylenephosphonate (NTMP), and dimethylenetriaminepenta­(methylene-phosphonic acid) (DETPMP). Geometrical analyses were used to explore the performances of the inhibitors and visualize the outcomes. quantitative structure activity relationship parameters were also used to predict the activity of the inhibitors in the system. The order of the inhibitors is in agreement with the experiments with the following values for binding energies: −1.06, −0.17, and −2.33 eV for PASP, NTMP, and DETPMP, respectively. The results of this study indicated that the inhibition strength of the three inhibitors on barite scale formation can be sequenced as DETPMP > PASP > NTMP. Moreover, the ecological toxicity (eco-tox) properties were predicted, and the environmental impact of the different inhibitors was assessed. All inhibitors showed comparable eco-tox properties and predicted to be soluble in water. Molecular simulations proved to be an effective tool in the prediction of the performance and toxicity of barite scale inhibitors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c05125