Preparation of Nanoscale Semi-IPNs with an Interconnected Microporous Structure via Cationic Polymerization of Bio-Based Tung Oil in a Homogeneous Solution of Poly(ε-caprolactone)

Nanoscale semi-interpenetrating polymer networks of bio-based poly­(ε-caprolactone) (PCL) and polymerized tung oil have been prepared via in situ cationic polymerization and compatibilization in a homogeneous solution. This novel blending technique produced a nanoscale morphology of poly­(ε-caprolac...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 5; no. 17; pp. 9977 - 9984
Main Authors Madbouly, Samy A, Kessler, Michael R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.05.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoscale semi-interpenetrating polymer networks of bio-based poly­(ε-caprolactone) (PCL) and polymerized tung oil have been prepared via in situ cationic polymerization and compatibilization in a homogeneous solution. This novel blending technique produced a nanoscale morphology of poly­(ε-caprolactone) with average particle sizes as small as 100 nm dispersed in a cross-linked tung oil matrix for 20 and 30 wt % PCL blend compositions. In addition, the exothermic cationic polymerization of tung oil in the presence of the PCL homogeneous solution created a microporous morphology with open three-dimensional interconnected cluster structures. The porous morphology was found to be composition-dependent (the pore size and interconnectivity decreased with increasing PCL content in the blend). The values of the cross-link density and storage modulus in the glassy state for fully cured samples increased significantly and reached a maximum for the 20 wt % PCL blend. This simple, versatile, low-cost strategy for preparing nanoscale and interconnected three-dimensional cluster structures with a microporous morphology and desired properties should be widely applicable for new polymer systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c00297