High-resolution evidence from southern China of an early holocene optimum and a mid-Holocene dry event during the Past 18,000 Years
Computer models suggest that the Holocene Optimum for East Asian summer monsoon precipitation occurred at different times in different regions of China. Previous studies indicate that this time-transgressive Holocene Optimum should have been experienced about 3000 yr ago in southern China. In this s...
Saved in:
Published in | Quaternary research Vol. 62; no. 1; pp. 39 - 48 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
01.07.2004
Elsevier Inc Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Computer models suggest that the Holocene Optimum for East Asian summer monsoon precipitation occurred at different times in different regions of China. Previous studies indicate that this time-transgressive Holocene Optimum should have been experienced about 3000 yr ago in southern China. In this study we describe a section which allows us to test this timing directly. We have closely examined high-resolution eutrophic peat/mud sequences covering the past 18,000 cal yr at Dahu, Jiangxi, on the southern boundary of the mid subtropical zone in China. Late Pleistocene successions in the Dahu record indicate cooler and much wetter conditions relative to synchronous events in north-central China. Our results indicate that the Holocene Optimum occurred between ca. 10,000 and 6000 cal yr ago in southern China, consistent with the global pattern. Conditions were relatively dry and cold from 6000 to 4000 cal yr ago. Our data also support the conclusion that the last deglaciation to early Holocene in the south was much wetter, resulting in the formation of dense broad-leaved forests, which could have acted to moderate land temperature ∼10,000 to 6000 cal yr ago, yielding a stable early-Holocene climate. After 6000 cal yr, forest reduction led to unstable land temperatures, and possibly to a northerly shift of the subtropical high-pressure system. Whatever the mechanism, these changes resulted in decreased precipitation between 6000 and 4000 cal yr B.P. in southern China. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0033-5894 1096-0287 |
DOI: | 10.1016/j.yqres.2004.05.004 |