Coordination-Controlled C–C Coupling Products via ortho-Site C–H Activation
The coordination-restricted ortho-site C–H bond activation and dehydrogenative homocoupling of 4,4′-(1,3-phenylene)dipyridine (1,3-BPyB) and 4,4′-(1,4-phenylene)dipyridine (1,4-BPyB) on different metal surfaces were studied by a combination of scanning tunneling microscopy, noncontact atomic force...
Saved in:
Published in | ACS nano Vol. 13; no. 2; pp. 1385 - 1393 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The coordination-restricted ortho-site C–H bond activation and dehydrogenative homocoupling of 4,4′-(1,3-phenylene)dipyridine (1,3-BPyB) and 4,4′-(1,4-phenylene)dipyridine (1,4-BPyB) on different metal surfaces were studied by a combination of scanning tunneling microscopy, noncontact atomic force microscopy, and density functional theory calculations. The coupling products on Cu(111) exhibited certain configurations subject to the spatial restriction of robust two-fold Cu–N coordination bonds. Compared to the V-shaped 1,3-BPyB, the straight backbone of 1,4-BPyB helped to further reduce the variety of reactive products. By utilizing the three-fold coordination of Fe atoms with 1,4-BPyB molecules on Au(111), a large-scale network containing single products was constructed. Our results offer a promising protocol for controllable on-surface synthesis with the aid of robust coordination interactions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X 1936-086X |
DOI: | 10.1021/acsnano.8b06885 |