What is the hydrologically effective area of a catchment?

Topographically delineated catchments are the common spatial unit to connect human activities and climate change with their consequences for water availability as a prerequisite for sustainable water management. However, inter-catchment groundwater flow and limited connectivity within the catchment...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research letters Vol. 15; no. 10; pp. 104024 - 104033
Main Authors Liu, Yan, Wagener, Thorsten, Beck, Hylke E, Hartmann, Andreas
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Topographically delineated catchments are the common spatial unit to connect human activities and climate change with their consequences for water availability as a prerequisite for sustainable water management. However, inter-catchment groundwater flow and limited connectivity within the catchment results in effective catchment areas different from those suggested by surface topography. Here, we introduce the notion of effective catchment area quantified through an effective catchment index (ECI), derived from observed streamflow, precipitation and actual evapotranspiration estimates, to understand the prevalence and significance of substantial differences between topographic and effective catchment areas in a global dataset. We evaluate our ECI analysis by comparing it to hydraulic head simulations of a global groundwater flow model and to the Budyko framework. We find that one in three studied catchments exhibit an effective catchment area either larger than double or smaller than half of their topographic area. These catchments will likely be affected by management activities such as groundwater pumping or land use change outside their topographic boundaries. Or alternatively, they affect water resources beyond their topographic boundaries. We find that the magnitude of the observed differences is strongly linked to aridity, mean slope, distance to coast, and topographic area. Our study provides a first-order identification of catchments where additional in-depth analysis of subsurface connectivity is needed to support sustainable water management.
Bibliography:ERL-108640.R2
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/aba7e5