Target Centroid Position Estimation of Phase-Path Volume Kalman Filtering

For the problem of easily losing track target when obstacles appear in intelligent robot target tracking, this paper proposes a target tracking algorithm integrating reduced dimension optimal Kalman filtering algorithm based on phase-path volume integral with Camshift algorithm. After analyzing the...

Full description

Saved in:
Bibliographic Details
Published inJournal of sensors Vol. 2016; no. 2016; pp. 1 - 9
Main Author Hu, Fengjun
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For the problem of easily losing track target when obstacles appear in intelligent robot target tracking, this paper proposes a target tracking algorithm integrating reduced dimension optimal Kalman filtering algorithm based on phase-path volume integral with Camshift algorithm. After analyzing the defects of Camshift algorithm, compare the performance with the SIFT algorithm and Mean Shift algorithm, and Kalman filtering algorithm is used for fusion optimization aiming at the defects. Then aiming at the increasing amount of calculation in integrated algorithm, reduce dimension with the phase-path volume integral instead of the Gaussian integral in Kalman algorithm and reduce the number of sampling points in the filtering process without influencing the operational precision of the original algorithm. Finally set the target centroid position from the Camshift algorithm iteration as the observation value of the improved Kalman filtering algorithm to fix predictive value; thus to make optimal estimation of target centroid position and keep the target tracking so that the robot can understand the environmental scene and react in time correctly according to the changes. The experiments show that the improved algorithm proposed in this paper shows good performance in target tracking with obstructions and reduces the computational complexity of the algorithm through the dimension reduction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-725X
1687-7268
DOI:10.1155/2016/4879293