Trace elements at the intersection of marine biological and geochemical evolution

Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what...

Full description

Saved in:
Bibliographic Details
Published inEarth-science reviews Vol. 163; pp. 323 - 348
Main Authors Robbins, Leslie J., Lalonde, Stefan V., Planavsky, Noah J., Partin, Camille A., Reinhard, Christopher T., Kendall, Brian, Scott, Clint, Hardisty, Dalton S., Gill, Benjamin C., Alessi, Daniel S., Dupont, Christopher L., Saito, Mak A., Crowe, Sean A., Poulton, Simon W., Bekker, Andrey, Lyons, Timothy W., Konhauser, Kurt O.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0012-8252
1872-6828
DOI:10.1016/j.earscirev.2016.10.013