Proteome Integral Solubility Alteration: A High-Throughput Proteomics Assay for Target Deconvolution
Various agents, including drugs as well as nonmolecular stimuli, induce alterations in the physicochemical properties of proteins in cell lysates, living cells, and organisms. These alterations can be probed by applying a stability- and solubility-modifying factor, such as elevated temperature, to a...
Saved in:
Published in | Journal of proteome research Vol. 18; no. 11; pp. 4027 - 4037 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Various agents, including drugs as well as nonmolecular stimuli, induce alterations in the physicochemical properties of proteins in cell lysates, living cells, and organisms. These alterations can be probed by applying a stability- and solubility-modifying factor, such as elevated temperature, to a varying degree. As a second dimension of variation, drug concentration or agent intensity/concentration can be used. Compared to standard approaches where curves are fitted to protein solubility data acquired at different temperatures and drug concentrations, Proteome Integral Solubility Alteration (PISA) assay increases the analysis throughput by 1 to 2 orders of magnitude for an unlimited number of factor variation points in such a scheme. The consumption of the compound and biological material decreases in PISA by the same factor. We envision widespread use of the PISA approach in chemical biology and drug development. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1535-3893 1535-3907 1535-3907 |
DOI: | 10.1021/acs.jproteome.9b00500 |