Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria

Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria dis...

Full description

Saved in:
Bibliographic Details
Published inmSystems Vol. 9; no. 6; p. e0121023
Main Authors Hu, Wei-feng, Yang, Jiang-yu, Wang, Jing-jing, Yuan, Shu-fei, Yue, Xin-jing, Zhang, Zheng, Zhang, Ya-qi, Meng, Jun-yan, Li, Yue-zhong
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 18.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
AbstractList The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.
ABSTRACT The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
ABSTRACTThe clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Author Yuan, Shu-fei
Zhang, Zheng
Meng, Jun-yan
Hu, Wei-feng
Yue, Xin-jing
Wang, Jing-jing
Yang, Jiang-yu
Zhang, Ya-qi
Li, Yue-zhong
Author_xml – sequence: 1
  givenname: Wei-feng
  orcidid: 0000-0002-4941-658X
  surname: Hu
  fullname: Hu, Wei-feng
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 2
  givenname: Jiang-yu
  surname: Yang
  fullname: Yang, Jiang-yu
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 3
  givenname: Jing-jing
  surname: Wang
  fullname: Wang, Jing-jing
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 4
  givenname: Shu-fei
  surname: Yuan
  fullname: Yuan, Shu-fei
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 5
  givenname: Xin-jing
  surname: Yue
  fullname: Yue, Xin-jing
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 6
  givenname: Zheng
  orcidid: 0000-0001-9971-6006
  surname: Zhang
  fullname: Zhang, Zheng
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 7
  givenname: Ya-qi
  surname: Zhang
  fullname: Zhang, Ya-qi
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 8
  givenname: Jun-yan
  surname: Meng
  fullname: Meng, Jun-yan
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
– sequence: 9
  givenname: Yue-zhong
  orcidid: 0000-0001-8336-6638
  surname: Li
  fullname: Li, Yue-zhong
  organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38747603$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUQC1URMvQD2CDLLFhk8FvJyuEIh4jVQIVWLCyHOdmJqPELnZSMX-P20xLi8TGtuzj4_vwc3TigweEXlKyppSVb8d0SBOMaU0oo6Rg_Ak6Y1xXhSRanzxYn6LzlPaEEKq4pqx6hk55qYVWhJ-hn_XORusmiH2aepew9S3ux3H2gLvZu6kPPuHQ4WkHGHwbtuDDnHB9ufn29bKobcLHOHDv8Xj4HZrFZl-gp50dEpwf5xX68fHD9_pzcfHl06Z-f1FYUcqpcJ2UjW4tQEt4pajkomRcMeekK6koqxy2ZFY7IrTomjwQxYS1DelAOW35Cm0Wbxvs3lzFfrTxYILtze1GiFtjY05tAFNp5apKMNF2RJQt2A5INgvatJQLTbPr3eK6mpsRWgd-inZ4JH184vud2YZrkzvC9U1FV-jN0RDDrxnSZMY-ORgG6yHXzXAipZCCaJXR1_-g-zBHn2uVqVJVsqJKZGq9UDaN7C9Byc2bpbn7Beb2FxjG84VXD3O4D_6u5xmgC-BiSClCd4_8X_oHUGXB1g
Cites_doi 10.1093/nar/gkx150
10.1073/pnas.1803440115
10.7554/eLife.50374
10.1186/s40168-020-00824-x
10.1016/j.ijbiomac.2019.04.056
10.1093/nar/gkaa946
10.1128/JB.00788-16
10.1038/nrmicro3241
10.1038/s41467-020-16366-7
10.1186/s12934-017-0758-x
10.1038/s41421-020-0160-4
10.1128/JB.02035-14
10.4161/rna.24160
10.1111/j.1574-6976.2009.00185.x
10.1186/s40793-015-0121-y
10.1098/rstb.2018.0087
10.1038/nrmicro3569
10.1093/nar/gkt606
10.1089/crispr.2020.0059
10.1016/j.cell.2017.11.032
10.1038/s41586-021-03951-z
10.1111/mmi.12152
10.1093/molbev/msy194
10.1038/s41586-020-1936-2
10.1002/anie.202014671
10.7554/eLife.27601
10.1021/acs.biochem.9b00735
10.1073/pnas.76.11.5952
10.1038/srep28566
10.3390/v10070374
10.1016/j.mib.2011.03.005
10.1099/ijsem.0.004213
10.1016/j.meegid.2021.104881
10.1016/j.xpro.2020.100039
10.1128/jb.179.24.7748-7758.1997
10.1038/s41564-020-00794-8
10.1146/annurev-biochem-072911-172315
10.1016/j.ygeno.2020.11.030
10.1146/annurev-ecolsys-121415-032428
10.1128/mSystems.01211-20
10.1093/nar/gkt1154
10.1007/s10142-015-0433-4
10.1128/AEM.02143-07
10.1128/jb.172.1.484-487.1990
10.1126/science.1138140
10.1038/s41579-019-0299-x
10.1007/BF00338394
10.1128/JB.00575-16
10.1016/j.tim.2022.11.005
10.1093/nar/gkab301
10.1016/j.jgg.2021.02.012
10.1016/0012-1606(86)90368-4
10.1007/s00239-005-0223-z
10.1038/s41564-017-0012-7
10.1093/nar/gku971
10.3390/microorganisms8050720
10.1021/acssynbio.1c00444
10.1128/mSphere.00235-20
10.1101/pdb.prot095141
10.1016/s0378-1119(96)00546-x
10.3389/fbioe.2021.758561
10.1038/s41592-020-00980-w
10.1016/j.mib.2023.102353
10.1038/s41576-019-0172-9
10.1093/nar/gky475
10.1093/nar/gkz217
10.1038/nature21059
10.4161/rna.24046
10.1093/nar/gkz915
10.1089/crispr.2021.0021
10.1080/15476286.2018.1493330
10.1007/0-387-30747-8_3
10.1128/mSystems.00934-20
10.3390/v10110602
10.3390/microorganisms7110551
10.1093/bioinformatics/btq413
10.1073/pnas.1905421116
10.1128/mr.60.1.70-102.1996
10.1126/science.aar4416
10.1093/nar/gkv1044
10.1039/b901287g
10.1093/nar/gky425
10.1186/s12934-018-0867-1
10.1042/BST20130038
10.1016/j.molcel.2018.02.028
ContentType Journal Article
Copyright Copyright © 2024 Hu et al.
Copyright © 2024 Hu et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2024 Hu et al. 2024 Hu et al.
Copyright_xml – notice: Copyright © 2024 Hu et al.
– notice: Copyright © 2024 Hu et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2024 Hu et al. 2024 Hu et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1128/msystems.01210-23
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2379-5077
Editor Nikel, Pablo Ivan
Editor_xml – sequence: 1
  givenname: Pablo Ivan
  surname: Nikel
  fullname: Nikel, Pablo Ivan
ExternalDocumentID oai_doaj_org_article_976c99424df048deafe0a7c41bd13471
PMC11237760
01210-23
38747603
10_1128_msystems_01210_23
Genre Journal Article
GrantInformation_xml – fundername: MOST | National Key Research and Development Program of China (NKPs)
  grantid: 2021YFC2101000
– fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: 32070030
– fundername: | Natural Science Foundation of Shandong Province ()
  grantid: ZR2019BC041
– fundername: MOST | National Key Research and Development Program of China (NKPs)
  grantid: 2018YFA0901704
– fundername: MOST | National Key Research and Development Program of China (NKPs)
  grantid: 2018YFA0900400
– fundername: MOST | National Key Research and Development Program of China (NKPs)
  grantid: 2021YFC2101000
  funderid: https://doi.org/10.13039/501100012166
– fundername: MOST | National Key Research and Development Program of China (NKPs)
  grantid: 2018YFA0900400
  funderid: https://doi.org/10.13039/501100012166
– fundername: 山东省科学技术厅 | Natural Science Foundation of Shandong Province (山东省自然科学基金)
  grantid: ZR2019BC041
– fundername: MOST | National Key Research and Development Program of China (NKPs)
  grantid: 2018YFA0901704
  funderid: https://doi.org/10.13039/501100012166
– fundername: ;
  grantid: 2018YFA0901704
– fundername: ;
  grantid: 32070030
– fundername: ;
  grantid: 2018YFA0900400
– fundername: ;
  grantid: ZR2019BC041
– fundername: ;
  grantid: 2021YFC2101000
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ACPRK
ADBBV
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EBS
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RHI
RPM
RSF
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-a485t-cf55b7daeed0396153482362cc5c8148901652a7c0474fb4740624aab0fe6c7a3
IEDL.DBID M48
ISSN 2379-5077
IngestDate Wed Aug 27 01:20:34 EDT 2025
Thu Aug 21 18:32:18 EDT 2025
Fri Jul 11 12:10:43 EDT 2025
Fri Jul 25 11:52:13 EDT 2025
Tue Jun 25 17:12:33 EDT 2024
Mon Jul 21 05:51:28 EDT 2025
Tue Jul 01 02:59:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CRISPR-Cas
immunity
Myxococcus xanthus
target tracing
myxobacteria
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a485t-cf55b7daeed0396153482362cc5c8148901652a7c0474fb4740624aab0fe6c7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0001-8336-6638
0000-0001-9971-6006
0000-0002-4941-658X
OpenAccessLink https://journals.asm.org/doi/10.1128/msystems.01210-23
PMID 38747603
PQID 3086959164
PQPubID 2045591
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_976c99424df048deafe0a7c41bd13471
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11237760
proquest_miscellaneous_3055454076
proquest_journals_3086959164
asm2_journals_10_1128_msystems_01210_23
pubmed_primary_38747603
crossref_primary_10_1128_msystems_01210_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-18
PublicationDateYYYYMMDD 2024-06-18
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle mSystems
PublicationTitleAbbrev mSystems
PublicationTitleAlternate mSystems
PublicationYear 2024
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Russel, J, Pinilla-Redondo, R, Mayo-Muñoz, D, Shah, SA, Sørensen, SJ (B74) 2020; 3
Asnicar, F, Thomas, AM, Beghini, F, Mengoni, C, Manara, S, Manghi, P, Zhu, QY, Bolzan, M, Cumbo, F, May, U, Sanders, JG, Zolfo, M, Kopylova, E, Pasolli, E, Knight, R, Mirarab, S, Huttenhower, C, Segata, N (B76) 2020; 11
Peng, R, Wang, Y, Feng, W, Yue, X, Chen, J, Hu, X, Li, Z, Sheng, D, Zhang, Y, Li, Y (B26) 2018; 17
Li, ZK, Xia, CY, Wang, YX, Li, X, Qiao, Y, Li, CY, Zhou, J, Zhang, L, Ye, XF, Huang, Y, Cui, ZL (B18) 2019; 132
Makarova, KS, Wolf, YI, Alkhnbashi, OS, Costa, F, Shah, SA, Saunders, SJ, Barrangou, R, Brouns, SJJ, Charpentier, E, Haft, DH, Horvath, P, Moineau, S, Mojica, FJM, Terns, RM, Terns, MP, White, MF, Yakunin, AF, Garrett, RA, van der Oost, J, Backofen, R, Koonin, EV (B9) 2015; 13
Waite, DW, Chuvochina, M, Pelikan, C, Parks, DH, Yilmaz, P, Wagner, M, Loy, A, Naganuma, T, Nakai, R, Whitman, WB, Hahn, MW, Kuever, J, Hugenholtz, P (B20) 2020; 70
Yan, WX, Chong, S, Zhang, H, Makarova, KS, Koonin, EV, Cheng, DR, Scott, DA (B35) 2018; 70
Sorek, R, Lawrence, CM, Wiedenheft, B (B51) 2013; 82
Singh, A, Gaur, M, Sharma, V, Khanna, P, Bothra, A, Bhaduri, A, Mondal, AK, Dash, D, Singh, Y, Misra, R (B63) 2021; 6
Makarova, KS, Wolf, YI, Iranzo, J, Shmakov, SA, Alkhnbashi, OS, Brouns, SJJ, Charpentier, E, Cheng, D, Haft, DH, Horvath, P (B10) 2020; 18
Westra, ER, Buckling, A, Fineran, PC (B7) 2014; 12
Kaiser, D (B83) 1979; 76
Letunic, I, Bork, P (B78) 2021; 49
Parks, DH, Rinke, C, Chuvochina, M, Chaumeil, PA, Woodcroft, BJ, Evans, PN, Hugenholtz, P, Tyson, GW (B66) 2017; 2
Green, MR, Sambrook, J (B84) 2019; 2019
Chen, Y, Zeng, ZF, She, QX, Han, WY (B4) 2023; 31
Li, Y, Pan, S, Zhang, Y, Ren, M, Feng, M, Peng, N, Chen, L, Liang, YX, She, Q (B12) 2016; 44
Vasse, M, Wielgoss, S (B43) 2018; 10
Rajagopalan, R, Kroos, L (B22) 2017; 199
Hu, WF, Niu, L, Yue, XJ, Zhu, LL, Hu, W, Li, YZ, Wu, C (B57) 2021; 10
Zhang, JP, Li, XL, Neises, A, Chen, WQ, Hu, LP, Ji, GZ, Yu, JY, Xu, J, Yuan, WP, Cheng, T, Zhang, XB (B38) 2016; 6
Zallot, R, Oberg, N, Gerlt, JA (B81) 2019; 58
Müller, S, Strack, SN, Ryan, SE, Shawgo, M, Walling, A, Harris, S, Chambers, C, Boddicker, J, Kirby, JR (B72) 2016; 198
Barrangou, R, Fremaux, C, Deveau, H, Richards, M, Boyaval, P, Moineau, S, Romero, DA, Horvath, P (B3) 2007; 315
Muñoz-Dorado, J, Moraleda-Muñoz, A, Marcos-Torres, FJ, Contreras-Moreno, FJ, Martin-Cuadrado, AB, Schrader, JM, Higgs, PI, Pérez, J (B52) 2019; 8
Rollie, C, Chevallereau, A, Watson, BNJ, Chyou, TY, Fradet, O, McLeod, I, Fineran, PC, Brown, CM, Gandon, S, Westra, ER (B70) 2020; 578
Westra, ER, Dowling, AJ, Broniewski, JM, van Houte, S (B31) 2016; 47
Hille, F, Richter, H, Wong, SP, Bratovič, M, Ressel, S, Charpentier, E (B6) 2018; 172
Volke, DC, Orsi, E, Nikel, PI (B8) 2023; 75
Chen, XJ, Han, K, Feng, J, Zhuo, L, Li, YJ, Li, YZ (B46) 2016; 11
Kroos, L, Kuspa, A, Kaiser, D (B21) 1986; 117
Lange, SJ, Alkhnbashi, OS, Rose, D, Will, S, Backofen, R (B36) 2013; 41
Pourcel, C, Touchon, M, Villeriot, N, Vernadet, JP, Couvin, D, Toffano-Nioche, C, Vergnaud, G (B28) 2020; 48
Lin, J, Feng, M, Zhang, H, She, Q (B55) 2020; 6
Xu, Z, Li, Y, Yan, A (B14) 2020; 1
Kroos, L, Kuspa, A, Kaiser, D (B71) 1990; 172
Dion, MB, Labrie, SJ, Shah, SA, Moineau, S (B80) 2018; 10
Dworkin, M (B15) 1996; 60
Hou, S, Brenes-Álvarez, M, Reimann, V, Alkhnbashi, OS, Backofen, R, Muro-Pastor, AM, Hess, WR (B64) 2019; 16
Mosterd, C, Moineau, S (B61) 2020; 5
Ye, X, Li, Z, Luo, X, Wang, W, Li, Y, Li, R, Zhang, B, Qiao, Y, Zhou, J, Fan, J, Wang, H, Huang, Y, Cao, H, Cui, Z, Zhang, R (B19) 2020; 8
Guy, L, Kultima, JR, Andersson, SGE (B79) 2010; 26
Shimkets, LJ, Dworkin, M, Reichenbach, H, Dworkin, M, Falkow, S, Rosenberg, E, Schleifer, KH, Stackebrandt, E (B47) 2006; 7
Biswas, A, Gagnon, JN, Brouns, SJJ, Fineran, PC, Brown, CM (B82) 2013; 10
Shimkets, LJ, Asher, SJ (B58) 1988; 211
Godde, JS, Bickerton, A (B69) 2006; 62
Couvin, D, Bernheim, A, Toffano-Nioche, C, Touchon, M, Michalik, J, Néron, B, Rocha, EPC, Vergnaud, G, Gautheret, D, Pourcel, C (B75) 2018; 46
Wang, Y, Yue, X, Yuan, S, Hong, Y, Hu, W, Li, Y (B27) 2021; 9
Liu, Y, Yao, Q, Zhu, H (B68) 2019; 7
Deng, L, Garrett, RA, Shah, SA, Peng, X, She, Q (B56) 2013; 87
Ueki, T, Inouye, S, Inouye, M (B54) 1996; 183
Fallah, MS, Mohebbi, A, Yasaghi, M, Ghaemi, EA (B62) 2021; 92
Berleman, JE, Kirby, JR (B16) 2009; 33
Pei, Z, Sadiq, FA, Han, X, Zhao, J, Zhang, H, Ross, RP, Lu, W, Chen, W (B41) 2021; 6
Roux, S, Páez-Espino, D, Chen, I-MA, Palaniappan, K, Ratner, A, Chu, K, Reddy, TBK, Nayfach, S, Schulz, F, Call, L, Neches, RY, Woyke, T, Ivanova, NN, Eloe-Fadrosh, EA, Kyrpides, NC (B42) 2021; 49
Sharma, G, Yao, AI, Smaldone, GT, Liang, J, Long, M, Facciotti, MT, Singer, M (B53) 2021; 113
Terns, MP, Terns, RM (B2) 2011; 14
Silas, S, Lucas-Elio, P, Jackson, SA, Aroca-Crevillén, A, Hansen, LL, Fineran, PC, Fire, AZ, Sánchez-Amat, A (B29) 2017; 6
Koonin, EV, Makarova, KS (B33) 2019; 374
Koonin, EV, Makarova, KS, Wolf, YI, Krupovic, M (B39) 2020; 21
Martínez Arbas, S, Narayanasamy, S, Herold, M, Lebrun, LA, Hoopmann, MR, Li, S, Lam, TJ, Kunath, BJ, Hicks, ND, Liu, CM, Price, LB, Laczny, CC, Gillece, JD, Schupp, JM, Keim, PS, Moritz, RL, Faust, K, Tang, H, Ye, Y, Skupin, A, May, P, Muller, EEL, Wilmes, P (B40) 2020; 6
Burstein, D, Harrington, LB, Strutt, SC, Probst, AJ, Anantharaman, K, Thomas, BC, Doudna, JA, Banfield, JF (B67) 2017; 542
Wang, X, Wu, B, Sui, X, Zhang, Z, Liu, T, Li, Y, Hu, G, He, M, Peng, N (B59) 2021; 48
Wallace, RA, Black, WP, Yang, XS, Yang, ZM (B23) 2014; 196
Yang, YJ, Wang, Y, Li, ZF, Gong, Y, Zhang, P, Hu, WC, Sheng, DH, Li, YZ (B25) 2017; 16
Hu, C, Almendros, C, Nam, KH, Costa, AR, Vink, JNA, Haagsma, AC, Bagde, SR, Brouns, SJJ, Ke, A (B48) 2021; 598
Shmakov, SA, Makarova, KS, Wolf, YI, Severinov, KV, Koonin, EV (B1) 2018; 115
Luo, ML, Mullis, AS, Leenay, RT, Beisel, CL (B11) 2015; 43
Csörgő, B, León, LM, Chau-Ly, IJ, Vasquez-Rifo, A, Berry, JD, Mahendra, C, Crawford, ED, Lewis, JD, Bondy-Denomy, J (B60) 2020; 17
Bernal-Bernal, D, Abellón-Ruiz, J, Iniesta, AA, Pajares-Martínez, E, Bastida-Martínez, E, Fontes, M, Padmanabhan, S, Elías-Arnanz, M (B24) 2018; 46
Nethery, MA, Korvink, M, Makarova, KS, Wolf, YI, Koonin, EV, Barrangou, R (B37) 2021; 4
Wenzel, SC, Müller, R (B17) 2009; 5
Makarova, KS, Wolf, YI, Koonin, EV (B32) 2013; 41
Pan, MC, Nethery, MA, Hidalgo-Cantabrana, C, Barrangou, R (B50) 2020; 8
Hidalgo-Cantabrana, C, Goh, YJ, Pan, MC, Sanozky-Dawes, R, Barrangou, R (B13) 2019; 116
Stachler, A-E, Turgeman-Grott, I, Shtifman-Segal, E, Allers, T, Marchfelder, A, Gophna, U (B73) 2017; 45
Panter, F, Bader, CD, Müller, R (B45) 2021; 60
Land, M, Hauser, L, Jun, S-R, Nookaew, I, Leuze, MR, Ahn, T-H, Karpinets, T, Lund, O, Kora, G, Wassenaar, T, Poudel, S, Ussery, DW (B65) 2015; 15
Zhao, JY, Zhong, L, Shen, MJ, Xia, ZJ, Cheng, QX, Sun, X, Zhao, GP, Li, YZ, Qin, ZJ (B44) 2008; 74
Wielgoss, S, Wolfensberger, R, Sun, L, Fiegna, F, Velicer, GJ (B30) 2019; 363
Almendros, C, Nobrega, FL, McKenzie, RE, Brouns, SJJ (B49) 2019; 47
Wu, SS, Kaiser, D (B85) 1997; 179
Hein, S, Scholz, I, Voß, B, Hess, WR (B34) 2013; 10
Li, M, Wang, R, Zhao, DH, Xiang, H (B5) 2014; 42
Yu, GC, Lam, TTY, Zhu, HC, Guan, Y (B77) 2018; 35
References_xml – ident: e_1_3_4_74_2
  doi: 10.1093/nar/gkx150
– ident: e_1_3_4_2_2
  doi: 10.1073/pnas.1803440115
– ident: e_1_3_4_53_2
  doi: 10.7554/eLife.50374
– ident: e_1_3_4_20_2
  doi: 10.1186/s40168-020-00824-x
– ident: e_1_3_4_19_2
  doi: 10.1016/j.ijbiomac.2019.04.056
– ident: e_1_3_4_43_2
  doi: 10.1093/nar/gkaa946
– ident: e_1_3_4_23_2
  doi: 10.1128/JB.00788-16
– ident: e_1_3_4_8_2
  doi: 10.1038/nrmicro3241
– ident: e_1_3_4_77_2
  doi: 10.1038/s41467-020-16366-7
– ident: e_1_3_4_26_2
  doi: 10.1186/s12934-017-0758-x
– ident: e_1_3_4_56_2
  doi: 10.1038/s41421-020-0160-4
– ident: e_1_3_4_24_2
  doi: 10.1128/JB.02035-14
– ident: e_1_3_4_35_2
  doi: 10.4161/rna.24160
– ident: e_1_3_4_17_2
  doi: 10.1111/j.1574-6976.2009.00185.x
– ident: e_1_3_4_47_2
  doi: 10.1186/s40793-015-0121-y
– ident: e_1_3_4_34_2
  doi: 10.1098/rstb.2018.0087
– ident: e_1_3_4_10_2
  doi: 10.1038/nrmicro3569
– ident: e_1_3_4_37_2
  doi: 10.1093/nar/gkt606
– ident: e_1_3_4_75_2
  doi: 10.1089/crispr.2020.0059
– ident: e_1_3_4_7_2
  doi: 10.1016/j.cell.2017.11.032
– ident: e_1_3_4_49_2
  doi: 10.1038/s41586-021-03951-z
– ident: e_1_3_4_57_2
  doi: 10.1111/mmi.12152
– ident: e_1_3_4_78_2
  doi: 10.1093/molbev/msy194
– ident: e_1_3_4_71_2
  doi: 10.1038/s41586-020-1936-2
– ident: e_1_3_4_46_2
  doi: 10.1002/anie.202014671
– ident: e_1_3_4_30_2
  doi: 10.7554/eLife.27601
– ident: e_1_3_4_82_2
  doi: 10.1021/acs.biochem.9b00735
– ident: e_1_3_4_84_2
  doi: 10.1073/pnas.76.11.5952
– ident: e_1_3_4_39_2
  doi: 10.1038/srep28566
– ident: e_1_3_4_44_2
  doi: 10.3390/v10070374
– ident: e_1_3_4_3_2
  doi: 10.1016/j.mib.2011.03.005
– ident: e_1_3_4_21_2
  doi: 10.1099/ijsem.0.004213
– ident: e_1_3_4_63_2
  doi: 10.1016/j.meegid.2021.104881
– ident: e_1_3_4_15_2
  doi: 10.1016/j.xpro.2020.100039
– ident: e_1_3_4_86_2
  doi: 10.1128/jb.179.24.7748-7758.1997
– ident: e_1_3_4_41_2
  doi: 10.1038/s41564-020-00794-8
– ident: e_1_3_4_52_2
  doi: 10.1146/annurev-biochem-072911-172315
– ident: e_1_3_4_54_2
  doi: 10.1016/j.ygeno.2020.11.030
– ident: e_1_3_4_32_2
  doi: 10.1146/annurev-ecolsys-121415-032428
– ident: e_1_3_4_42_2
  doi: 10.1128/mSystems.01211-20
– ident: e_1_3_4_6_2
  doi: 10.1093/nar/gkt1154
– ident: e_1_3_4_66_2
  doi: 10.1007/s10142-015-0433-4
– ident: e_1_3_4_45_2
  doi: 10.1128/AEM.02143-07
– ident: e_1_3_4_72_2
  doi: 10.1128/jb.172.1.484-487.1990
– ident: e_1_3_4_4_2
  doi: 10.1126/science.1138140
– ident: e_1_3_4_11_2
  doi: 10.1038/s41579-019-0299-x
– ident: e_1_3_4_59_2
  doi: 10.1007/BF00338394
– ident: e_1_3_4_73_2
  doi: 10.1128/JB.00575-16
– ident: e_1_3_4_5_2
  doi: 10.1016/j.tim.2022.11.005
– ident: e_1_3_4_79_2
  doi: 10.1093/nar/gkab301
– ident: e_1_3_4_60_2
  doi: 10.1016/j.jgg.2021.02.012
– ident: e_1_3_4_22_2
  doi: 10.1016/0012-1606(86)90368-4
– ident: e_1_3_4_70_2
  doi: 10.1007/s00239-005-0223-z
– ident: e_1_3_4_67_2
  doi: 10.1038/s41564-017-0012-7
– ident: e_1_3_4_12_2
  doi: 10.1093/nar/gku971
– ident: e_1_3_4_51_2
  doi: 10.3390/microorganisms8050720
– ident: e_1_3_4_58_2
  doi: 10.1021/acssynbio.1c00444
– ident: e_1_3_4_62_2
  doi: 10.1128/mSphere.00235-20
– ident: e_1_3_4_85_2
  doi: 10.1101/pdb.prot095141
– ident: e_1_3_4_55_2
  doi: 10.1016/s0378-1119(96)00546-x
– ident: e_1_3_4_28_2
  doi: 10.3389/fbioe.2021.758561
– ident: e_1_3_4_61_2
  doi: 10.1038/s41592-020-00980-w
– ident: e_1_3_4_9_2
  doi: 10.1016/j.mib.2023.102353
– ident: e_1_3_4_40_2
  doi: 10.1038/s41576-019-0172-9
– ident: e_1_3_4_25_2
  doi: 10.1093/nar/gky475
– ident: e_1_3_4_50_2
  doi: 10.1093/nar/gkz217
– ident: e_1_3_4_68_2
  doi: 10.1038/nature21059
– ident: e_1_3_4_83_2
  doi: 10.4161/rna.24046
– ident: e_1_3_4_29_2
  doi: 10.1093/nar/gkz915
– ident: e_1_3_4_38_2
  doi: 10.1089/crispr.2021.0021
– ident: e_1_3_4_65_2
  doi: 10.1080/15476286.2018.1493330
– ident: e_1_3_4_48_2
  doi: 10.1007/0-387-30747-8_3
– ident: e_1_3_4_64_2
  doi: 10.1128/mSystems.00934-20
– ident: e_1_3_4_81_2
  doi: 10.3390/v10110602
– ident: e_1_3_4_69_2
  doi: 10.3390/microorganisms7110551
– ident: e_1_3_4_80_2
  doi: 10.1093/bioinformatics/btq413
– ident: e_1_3_4_14_2
  doi: 10.1073/pnas.1905421116
– ident: e_1_3_4_16_2
  doi: 10.1128/mr.60.1.70-102.1996
– ident: e_1_3_4_31_2
  doi: 10.1126/science.aar4416
– ident: e_1_3_4_13_2
  doi: 10.1093/nar/gkv1044
– ident: e_1_3_4_18_2
  doi: 10.1039/b901287g
– ident: e_1_3_4_76_2
  doi: 10.1093/nar/gky425
– ident: e_1_3_4_27_2
  doi: 10.1186/s12934-018-0867-1
– ident: e_1_3_4_33_2
  doi: 10.1042/BST20130038
– ident: e_1_3_4_36_2
  doi: 10.1016/j.molcel.2018.02.028
– volume: 74
  start-page: 1980
  year: 2008
  end-page: 1987
  ident: B44
  article-title: Discovery of the autonomously replicating plasmid pMF1 from Myxococcus fulvus and development of a gene cloning system in Myxococcus xanthus
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02143-07
– volume: 46
  start-page: W246
  year: 2018
  end-page: W251
  ident: B75
  article-title: CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky425
– volume: 11
  year: 2016
  ident: B46
  article-title: The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 (M 206081)
  publication-title: Stand Genomic Sci
  doi: 10.1186/s40793-015-0121-y
– volume: 542
  start-page: 237
  year: 2017
  end-page: 241
  ident: B67
  article-title: New CRISPR-Cas systems from uncultivated microbes
  publication-title: Nature
  doi: 10.1038/nature21059
– volume: 172
  start-page: 1239
  year: 2018
  end-page: 1259
  ident: B6
  article-title: The biology of CRISPR-Cas: backward and forward
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.032
– volume: 35
  start-page: 3041
  year: 2018
  end-page: 3043
  ident: B77
  article-title: Two methods for mapping and visualizing associated data on phylogeny using Ggtree
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy194
– volume: 42
  start-page: 2483
  year: 2014
  end-page: 2492
  ident: B5
  article-title: Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1154
– volume: 75
  start-page: 102353
  year: 2023
  ident: B8
  article-title: Emergent CRISPR-Cas-based technologies for engineering non-model bacteria
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2023.102353
– volume: 363
  start-page: 1342
  year: 2019
  end-page: 1345
  ident: B30
  article-title: Social genes are selection hotspots in kin groups of a soil microbe
  publication-title: Science
  doi: 10.1126/science.aar4416
– volume: 41
  start-page: 8034
  year: 2013
  end-page: 8044
  ident: B36
  article-title: CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt606
– volume: 21
  start-page: 119
  year: 2020
  end-page: 131
  ident: B39
  article-title: Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0172-9
– volume: 70
  start-page: 327
  year: 2018
  end-page: 339
  ident: B35
  article-title: Cas13D is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.02.028
– volume: 5
  start-page: 567
  year: 2009
  end-page: 574
  ident: B17
  article-title: Myxobacteria-'microbial factories' for the production of bioactive secondary metabolites
  publication-title: Mol Biosyst
  doi: 10.1039/b901287g
– volume: 12
  start-page: 317
  year: 2014
  end-page: 326
  ident: B7
  article-title: CRISPR-Cas systems: beyond adaptive immunity
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3241
– volume: 132
  start-page: 1235
  year: 2019
  end-page: 1243
  ident: B18
  article-title: Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.04.056
– volume: 45
  start-page: 5208
  year: 2017
  end-page: 5216
  ident: B73
  article-title: High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx150
– volume: 8
  start-page: 720
  year: 2020
  ident: B50
  article-title: Comprehensive mining and characterization of CRISPR-Cas systems in Bifidobacterium
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8050720
– volume: 116
  start-page: 15774
  year: 2019
  end-page: 15783
  ident: B13
  article-title: Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1905421116
– volume: 8
  year: 2019
  ident: B52
  article-title: Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program
  publication-title: Elife
  doi: 10.7554/eLife.50374
– volume: 15
  start-page: 141
  year: 2015
  end-page: 161
  ident: B65
  article-title: Insights from 20 years of bacterial genome sequencing
  publication-title: Funct Integr Genomics
  doi: 10.1007/s10142-015-0433-4
– volume: 198
  start-page: 3335
  year: 2016
  end-page: 3344
  ident: B72
  article-title: Identification of functions affecting predator-prey interactions between Myxococcus xanthus and Bacillus subtilis
  publication-title: J Bacteriol
  doi: 10.1128/JB.00575-16
– volume: 58
  start-page: 4169
  year: 2019
  end-page: 4182
  ident: B81
  article-title: The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.9b00735
– volume: 374
  year: 2019
  ident: B33
  article-title: Origins and evolution of CRISPR-Cas systems
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2018.0087
– volume: 48
  start-page: D535
  year: 2020
  end-page: D544
  ident: B28
  article-title: CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz915
– volume: 7
  start-page: 31
  year: 2006
  end-page: 115
  ident: B47
  article-title: The myxobacteria
  publication-title: The prokaryotes: proteobacteria: delta, epsilon subclass ;p In Vol ;Springer New York, New York, NY
– volume: 82
  start-page: 237
  year: 2013
  end-page: 266
  ident: B51
  article-title: CRISPR-mediated adaptive immune systems in bacteria and archaea
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-072911-172315
– volume: 3
  start-page: 462
  year: 2020
  end-page: 469
  ident: B74
  article-title: Crisprcastyper: automated identification, annotation, and classification of CRISPR-Cas loci
  publication-title: CRISPR J
  doi: 10.1089/crispr.2020.0059
– volume: 10
  year: 2018
  ident: B80
  article-title: CRISPRStudio: a user-friendly software for rapid CRISPR array visualization
  publication-title: Viruses
  doi: 10.3390/v10110602
– volume: 76
  start-page: 5952
  year: 1979
  end-page: 5956
  ident: B83
  article-title: Social gliding is correlated with the presence of pili in Myxococcus xanthus
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.76.11.5952
– volume: 4
  start-page: 558
  year: 2021
  end-page: 574
  ident: B37
  article-title: CRISPRclassify: repeat-based classification of CRISPR Loci
  publication-title: CRISPR J
  doi: 10.1089/crispr.2021.0021
– volume: 43
  start-page: 674
  year: 2015
  end-page: 681
  ident: B11
  article-title: Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku971
– volume: 10
  start-page: 852
  year: 2013
  end-page: 864
  ident: B34
  article-title: Adaptation and modification of three CRISPR loci in two closely related cyanobacteria
  publication-title: RNA Biol
  doi: 10.4161/rna.24160
– volume: 26
  start-page: 2334
  year: 2010
  end-page: 2335
  ident: B79
  article-title: genoPlotR: comparative gene and genome visualization in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq413
– volume: 18
  start-page: 67
  year: 2020
  end-page: 83
  ident: B10
  article-title: Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-019-0299-x
– volume: 6
  year: 2020
  ident: B55
  article-title: Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase
  publication-title: Cell Discov
  doi: 10.1038/s41421-020-0160-4
– volume: 17
  start-page: 1183
  year: 2020
  end-page: 1190
  ident: B60
  article-title: A compact Cascade-Cas3 system for targeted genome engineering
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-00980-w
– volume: 172
  start-page: 484
  year: 1990
  end-page: 487
  ident: B71
  article-title: Defects in fruiting body development caused by Tn5 lac insertions in Myxococcus xanthus
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.1.484-487.1990
– volume: 117
  start-page: 252
  year: 1986
  end-page: 266
  ident: B21
  article-title: A global analysis of developmentally regulated genes in Myxococcus xanthus
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(86)90368-4
– volume: 183
  start-page: 153
  year: 1996
  end-page: 157
  ident: B54
  article-title: Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker
  publication-title: Gene
  doi: 10.1016/s0378-1119(96)00546-x
– volume: 14
  start-page: 321
  year: 2011
  end-page: 327
  ident: B2
  article-title: CRISPR-based adaptive immune systems
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2011.03.005
– volume: 6
  year: 2021
  ident: B41
  article-title: Comprehensive scanning of prophages in Lactobacillus: distribution, diversity, antibiotic resistance genes, and linkages with CRISPR-Cas systems
  publication-title: mSystems
  doi: 10.1128/mSystems.01211-20
– volume: 7
  year: 2019
  ident: B68
  article-title: Meta-16S rRNA gene phylogenetic reconstruction reveals the astonishing diversity of cosmopolitan myxobacteria
  publication-title: Microorganisms
  doi: 10.3390/microorganisms7110551
– volume: 8
  year: 2020
  ident: B19
  article-title: A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00824-x
– volume: 9
  year: 2021
  ident: B27
  article-title: Internal promoters and their effects on the transcription of operon genes for epothilone production in Myxococcus xanthus
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.758561
– volume: 10
  start-page: 817
  year: 2013
  end-page: 827
  ident: B82
  article-title: CRISPRTarget: bioinformatic prediction and analysis of crRNA targets
  publication-title: RNA Biol
  doi: 10.4161/rna.24046
– volume: 113
  start-page: 120
  year: 2021
  end-page: 134
  ident: B53
  article-title: Global gene expression analysis of the Myxococcus xanthus developmental time course
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.11.030
– volume: 10
  start-page: 2904
  year: 2021
  end-page: 2909
  ident: B57
  article-title: Characterization of constitutive promoters for the elicitation of secondary metabolites in myxobacteria
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.1c00444
– volume: 60
  start-page: 8081
  year: 2021
  end-page: 8088
  ident: B45
  article-title: The sandarazols are cryptic and structurally unique plasmid-encoded toxins from a rare myxobacterium
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202014671
– volume: 598
  start-page: 515
  year: 2021
  end-page: 520
  ident: B48
  article-title: Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas
  publication-title: Nature
  doi: 10.1038/s41586-021-03951-z
– volume: 16
  year: 2017
  ident: B25
  article-title: Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-017-0758-x
– volume: 10
  year: 2018
  ident: B43
  article-title: Bacteriophages of Myxococcus xanthus, a social bacterium
  publication-title: Viruses
  doi: 10.3390/v10070374
– volume: 115
  start-page: E5307
  year: 2018
  end-page: E5316
  ident: B1
  article-title: Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1803440115
– volume: 17
  year: 2018
  ident: B26
  article-title: CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-018-0867-1
– volume: 5
  year: 2020
  ident: B61
  article-title: Characterization of a type II-A CRISPR-CAS system in Streptococcus mutans
  publication-title: mSphere
  doi: 10.1128/mSphere.00235-20
– volume: 62
  start-page: 718
  year: 2006
  end-page: 729
  ident: B69
  article-title: The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes
  publication-title: J Mol Evol
  doi: 10.1007/s00239-005-0223-z
– volume: 6
  year: 2021
  ident: B63
  article-title: Comparative genomic analysis of Mycobacteriaceae reveals horizontal gene transfer-mediated evolution of the CRISPR-CAS system in the Mycobacterium tuberculosis complex
  publication-title: mSystems
  doi: 10.1128/mSystems.00934-20
– volume: 315
  start-page: 1709
  year: 2007
  end-page: 1712
  ident: B3
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1138140
– volume: 6
  year: 2017
  ident: B29
  article-title: Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems
  publication-title: Elife
  doi: 10.7554/eLife.27601
– volume: 92
  start-page: 104881
  year: 2021
  ident: B62
  article-title: CRISPR-CAS systems in proteus mirabilis
  publication-title: Infect Genet Evol
  doi: 10.1016/j.meegid.2021.104881
– volume: 16
  start-page: 518
  year: 2019
  end-page: 529
  ident: B64
  article-title: CRISPR-Cas systems in multicellular cyanobacteria
  publication-title: RNA Biology
  doi: 10.1080/15476286.2018.1493330
– volume: 33
  start-page: 942
  year: 2009
  end-page: 957
  ident: B16
  article-title: Deciphering the hunting strategy of a bacterial wolfpack
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2009.00185.x
– volume: 60
  start-page: 70
  year: 1996
  end-page: 102
  ident: B15
  article-title: Recent advances in the social and developmental biology of the myxobacteria
  publication-title: Microbiol Rev
  doi: 10.1128/mr.60.1.70-102.1996
– volume: 46
  start-page: 6726
  year: 2018
  end-page: 6745
  ident: B24
  article-title: Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function sigma/anti-sigma pair and a global regulatory complex
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky475
– volume: 13
  start-page: 722
  year: 2015
  end-page: 736
  ident: B9
  article-title: An updated evolutionary classification of CRISPR-Cas systems
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3569
– volume: 578
  start-page: 149
  year: 2020
  end-page: 153
  ident: B70
  article-title: Targeting of temperate phages drives loss of type I CRISPR-Cas systems
  publication-title: Nature
  doi: 10.1038/s41586-020-1936-2
– volume: 11
  year: 2020
  ident: B76
  article-title: Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16366-7
– volume: 199
  year: 2017
  ident: B22
  article-title: The dev operon regulates the timing of sporulation during Myxococcus xanthus development
  publication-title: J Bacteriol
  doi: 10.1128/JB.00788-16
– volume: 47
  start-page: 307
  year: 2016
  end-page: 331
  ident: B31
  article-title: Evolution and ecology of CRISPR
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-121415-032428
– volume: 41
  start-page: 1392
  year: 2013
  end-page: 1400
  ident: B32
  article-title: The basic building blocks and evolution of CRISPR-Cas systems
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20130038
– volume: 1
  year: 2020
  ident: B14
  article-title: Repurposing the native type I-F CRISPR-Cas system in Pseudomonas aeruginosa for genome editing
  publication-title: STAR Protoc
  doi: 10.1016/j.xpro.2020.100039
– volume: 196
  start-page: 4036
  year: 2014
  end-page: 4043
  ident: B23
  article-title: A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production
  publication-title: J Bacteriol
  doi: 10.1128/JB.02035-14
– volume: 6
  year: 2016
  ident: B38
  article-title: Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency
  publication-title: Sci Rep
  doi: 10.1038/srep28566
– volume: 48
  start-page: 115
  year: 2021
  end-page: 122
  ident: B59
  article-title: CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2021.02.012
– volume: 70
  start-page: 5972
  year: 2020
  end-page: 6016
  ident: B20
  article-title: Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.004213
– volume: 31
  start-page: 405
  year: 2023
  end-page: 418
  ident: B4
  article-title: The abortive infection functions of CRISPR-CAS and Argonaute
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2022.11.005
– volume: 44
  start-page: e34
  year: 2016
  end-page: e34
  ident: B12
  article-title: Harnessing type I and type III CRISPR-Cas systems for genome editing
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1044
– volume: 87
  start-page: 1088
  year: 2013
  end-page: 1099
  ident: B56
  article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.12152
– volume: 6
  start-page: 123
  year: 2020
  end-page: 135
  ident: B40
  article-title: Roles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-00794-8
– volume: 211
  start-page: 63
  year: 1988
  end-page: 71
  ident: B58
  article-title: Use of recombination techniques to examine the structure of the Csg locus of Myxococcus xanthus
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00338394
– volume: 179
  start-page: 7748
  year: 1997
  end-page: 7758
  ident: B85
  article-title: Regulation of expression of the pilA gene in Myxococcus xanthus
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.24.7748-7758.1997
– volume: 2
  start-page: 1533
  year: 2017
  end-page: 1542
  ident: B66
  article-title: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-017-0012-7
– volume: 49
  start-page: D764
  year: 2021
  end-page: D775
  ident: B42
  article-title: IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkaa946
– volume: 2019
  year: 2019
  ident: B84
  article-title: Polymerase chain reaction (PCR) amplification of GC-Rich templates
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.prot095141
– volume: 49
  start-page: W293
  year: 2021
  end-page: W296
  ident: B78
  article-title: Interactive tree of life (iTOL) V5: an online tool for phylogenetic tree display and annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab301
– volume: 47
  start-page: 5223
  year: 2019
  end-page: 5230
  ident: B49
  article-title: Cas4-Cas1 fusions drive efficient PAM selection and control CRISPR adaptation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz217
SSID ssj0001637129
Score 2.2738533
Snippet Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes...
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to...
ABSTRACTThe clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms...
ABSTRACT The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0121023
SubjectTerms Bacteriology
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
CRISPR
CRISPR-Cas
CRISPR-Cas Systems - genetics
Datasets
DNA repair
Genes
Genetic engineering
Genome, Bacterial - genetics
Genomes
Gram-negative bacteria
Homology
Immune system
immunity
myxobacteria
Myxococcales - genetics
Myxococcus xanthus
Phages
Phylogeny
Plasmids
Prokaryotes
Proteins
Research Article
Social behavior
Social organization
target tracing
SummonAdditionalLinks – databaseName: Open Access Journals from American Society for Microbiology
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ShEIvJW362DyKCoFCwamshy0fN0tD0kJb0i6kJyFZEt3Dekt2A8m_z0i2N3EJJRcfbMkezUMzY2k-ARxSxyt0jGWG3sdnwiueVQrN3cbsQNaqsi3a57fidCq-XMiLDSj6WpiOg8sjs5ynhfy1ZTP1ad6iGy-PIhAZzRh_AluSVQINcms8nn7_evd3peAlerJuGfPBvjgH4zfYwB8l2P6HYs1_t0ze80En2_C8Cx7JuJX2C9jwzUt42h4nebMDvydD9GViGkdmsQDEk-i_koqRRSAY9BHfuEUL0Eom52c_f5xnE7MkHflk1pD5zTXaenqbeQXTk8-_JqdZd3RCZoSSq6wOUtrSGfSANApDRgwb9FV1jfzHDKiKVUzMlDUVpQgWL7RgwhhLgy_q0vDXsNksGv8WSKwf8blUtsytkI5ZHxwrLA_BekFDPoIPkY-6l5xOaQVTuue4ThzXjI_gY89q_bfF0vhf4-MojHXDCIOdbqBS6M6qNMZSdVUhgS7gTOS8CZ7ioERuXSyRRdr2e1He0ccxi6skhsViBO_Xj9Gq4lKJaTwyXkcctIRNWIzgTSv5NSVcYQpWUKRQDXRiQOrwSTP7k5C7cai8xL67j-bZHjxjGEbFzWm52ofN1eWVP8AwaGXfdTp_C-p3Biw
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZhodBLaZM-nEdRIVAouJH1sOVjuzSkPYSQNpCehGRJdA_rDdkNNP--M5J3uy4lvfTigyWb0WjG34wlfUPIMfOiBWBsSkCfUMqgRdlqcHeH2YHqdOsy2-d5fXYlv1yr661SX7gnLNMDZ8WdAFx2bSu59BGMzQcbA7NNJyvn8RRkSnwA87aSqfR3pRYNINmwjAnf4JN5ZkZevkcSM1ZieaKJXc75CI8Sbf_fYs0_t0xuYdDpU_JkCB7phyz0M7IT-l3yKJeTvN8j36dj9mVqe09neAAkUMSvZGJ0ESkEfTT0fpEJWun08vPXi8tyapd0EJ_Oejq__wm-nt5mn5Or00_fpmflUDqhtFKrVdlFpVzjLSAgw8lQyGEDWNV1oH_IgFo8xcRBj0w2Mjq4sJpLax2Loe4aK16QSb_owytC8fxIqJR2TeWk8tyF6HntRIwuSBargrxFPZrB9pcmpRVcm7XGTdK44aIg79aqNjeZS-Ohzh9xMjYdkQY73QDjMINxmH8ZR0EO11P5Wz4BWVyrICyWBXmzaQavwqUS2wdQvEEetMRNWBfkZZ75jSRCQwpWM5BQj2xiJOq4pZ_9SMzdMFTRwLP7_2NwB-QxhwgL961V-pBMVrd34QgipJV7nZzhF3FPDr0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA-6Ivgifrt6SgRBEOK1TdKkT6KLx-mDyOnB-hSSJjn3YdvzuoL33zuTZnetyL30oUnLZD4yM_n4DSEvC88bcIyKgfcJTATNWaPB3B1mB7LVjRvRPj_Xx6fi01Iu84LbkI9VbufENFH7vsU18kMOsXcjIZgRb89_MqwahburuYTGdXIDoctQq9VS7ddYaq7An-XNTJiJD9cjPvLwBqHMCoZFimZ2WFcTr5TA-_8Xcf57cPIvT3R0h9zOISR9N8r8LrkWunvk5lhU8vI--b6YYjBT23m6wmsggaIXS4pG-0gh9KOh8_0I00oXJx-_fjlhCzvQTD5ddXR9-RssPv3NPiCnRx--LY5ZLqDArNByw9oopVPegh8sUCQSkWzAY7UtSAHyoAbvMlVWtYVQIjp4FHUlrHVFDHWrLH9IZl3fhceE4i2SUErtVOmE9JUL0Ve14zG6IIpYzskr5KPJFjCYlFxU2mw5bhLHTcXn5PWW1eZ8RNS4qvN7FMauI4Jhpxf9xZnJtmUgomqbBgj0EeYjH2wMBQxKlM7jRVmg7WAryj19e32akxe7ZrAt3DCxXQDGG0RDSwiF9Zw8GiW_o4RrSMTqAijUE52YkDpt6VY_En43DJUr-PbJ1XQ9JbcqiKDwXFqpD8hsc_ErPIMIaOOeJzX_A66ABjM
  priority: 102
  providerName: ProQuest
Title Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/38747603
https://journals.asm.org/doi/10.1128/msystems.01210-23
https://www.proquest.com/docview/3086959164
https://www.proquest.com/docview/3055454076
https://pubmed.ncbi.nlm.nih.gov/PMC11237760
https://doaj.org/article/976c99424df048deafe0a7c41bd13471
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8fy69c4lgiAIPdskbdIHkb3ljlPxPFYX1qeSNIkuuF1vd4Xb_95J2u5ZWQRfWugX05lM5jdp5zcAL2LDcgyMIsLoYyNuJYtyie6ufXaQljLXNdvnZXYx5u8n6WQH2vZWjQKXW1M7309qvPhxcnO9fosO_6YugJGvZzXp8fLE85PFEWW7sI-BSfiGBh8btB-WXDImktC3jDKRR4iERPOdc-tTcJJWyxntBKzA678NjP79T-UfQer8Ptxr0CUZ1MPhAHZs9QDu1P0m1w_h67BLz0xUZcjUV4hY4gNcGINk7giiQmIrM68ZXMlw9O7z1SgaqiVpxCfTiszWNzgZhKepRzA-P_syvIia3gqR4jJdRaVLUy2MwhAZe2ulnuQGg1lZooEwRcp9mRNVooy54E7jJs4oV0rHzmalUOwx7FXzyh4C8QUmNkmlFonmqaHaOkMzzZzTlscu6cFLr8eitW0R8g4qi1bjRdB4QVkPXrWqLn7WZBv_uvjUG2NzoefJDgfmi29F43YFgq0yz1FA43CqMlY5G-NL8UQbX0OLsh23pryVj2Gal6eIm3kPnm9Oo9v5bymqsqj4whOlBfLCrAdPastvJGESc7QsRgllZ0x0RO2eqabfA7U3vioTeO_T_9HEEdylCLX8D2yJPIa91eKXfYZQaaX7sCsmog_7g8H40wfcn55dXo36YeGhH5zjN3LgFqg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXxJuFAkYCISGFOo4TJweEYKHapaVCpZWWk7FjG_awSWkWwf4pfiMzTrLLItRbLznkpS_j8TxizzeEPGE2KcAxygi8j4uEy5OoyGG6G8wO0jIvTMv2eZCNj8X7aTrdIr_7WhjcVtnbxGCobV3iP_KdBGLvIoVgRrw6-R5h1yhcXe1baLRqseeWPyFla15O3sL4PuV8993RaBx1XQUiLfJ0EZU-TY20GpwDQ5wp0ruAGS9LgAbJQYEFPlzLkgkpvIEDy7jQ2jDvslLqBN57gVwEx8sw2ZNTuf6nkyUS_Ge3eAqWf2fe8jE3L5A6jUXYFGmgmznf8IKhWcD_Itx_N2r-5fl2r5GrXchKX7c6dp1sueoGudQ2sVzeJJ9Hm5zPVFeWzrDsxFH0mkGxae0phJrUVbZuaWHp6HDy6eNhNNIN7eDTWUXny19gYcLb9C1yfC6ivU0GVV25u4Ri1YqL09zI2IjUcuO85ZlJvDdOMB8PyTOUo-pmXKNCMsNz1UtcBYkrngzJ817U6qRl8Djr5jc4GKsbkXw7nKhPv6puLiuI4MqiAIDWg_2zTnvH4KNEbCwW5gK27X4o1_jW-jskj1eXYS7jAo2uHAheIftaYETMhuROO_IrJEkOiV_GAGG-oRMbUDevVLNvgS8cPjWR8Oy9s3E9IpfHRx_21f7kYO8-ucIhesM9cXG-TQaL0x_uAURfC_MwqDwlX857jv0Bt8dCAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeBAosEQkIysdfr1wEhmjZqKIqiQKVyWna9u5BDnFIHQf4av44ZPxKMUG-9-OCXPs_O7Mx4d74BeO6bMEPHmHjofawnbBp6WYrmrik7iPI00zXb5yQ-OhHvT6PTHfjd1sLQtsp2TqwmarPM6R_5IMTYO4swmBED12yLmB6M3p5996iDFK20tu00ahU5tuufmL6Vb8YHONYvOB8dfhoeeU2HAU-JNFp5uYsinRiFjsInzBFRveCUnucIExOFjIp9uEpyXyTCaTz4MRdKad_ZOE9UiO-9ArsJZUU92N0_nExn2z88cZigN22WUtEPDBY1O3P5mojUfI9aJPVUueAdn1i1DvhfvPvvts2__ODoJtxoAlj2rta4W7Bji9twtW5pub4Dn4ddBmimCsPmVIRiGfnQSs3Z0jEMPJktzLImiWXD2fjjdOYNVcka-GxesMX6F8431dvUXTi5FOHeg16xLOwDYFTDYoMo1UmgRWS4ts7wWIfOaSt8F_ThJclRNvZXyiq14alsJS4riUse9uFVK2p5VvN5XHTzPg3G5kai4q5OLM-_ysayJcZzeZYhQONwNjRWOevjR4lAGyrTRWx77VBu8W21uQ_PNpfRsmm5RhUWBS-Ji63iR4z7cL8e-Q2SMMU0MPYRYdrRiQ7U7pVi_q1iD8dPDRN89uHFuJ7CNbQv-WE8OX4E1zmGcrRBLkj3oLc6_2EfYyi20k8anWfw5bLN7A8bf0ed
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+and+immune+functions+of+the+endogenous+CRISPR-Cas+systems+in+myxobacteria&rft.jtitle=mSystems&rft.au=Hu%2C+Wei-feng&rft.au=Yang%2C+Jiang-yu&rft.au=Wang%2C+Jing-jing&rft.au=Yuan%2C+Shu-fei&rft.date=2024-06-18&rft.issn=2379-5077&rft.eissn=2379-5077&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1128%2Fmsystems.01210-23&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_msystems_01210_23
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon