Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria
Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria dis...
Saved in:
Published in | mSystems Vol. 9; no. 6; p. e0121023 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
18.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications. |
---|---|
AbstractList | The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications. Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications. The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. ABSTRACT The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications. ABSTRACTThe clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications. The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.IMPORTANCEServing as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications. The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications. |
Author | Yuan, Shu-fei Zhang, Zheng Meng, Jun-yan Hu, Wei-feng Yue, Xin-jing Wang, Jing-jing Yang, Jiang-yu Zhang, Ya-qi Li, Yue-zhong |
Author_xml | – sequence: 1 givenname: Wei-feng orcidid: 0000-0002-4941-658X surname: Hu fullname: Hu, Wei-feng organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 2 givenname: Jiang-yu surname: Yang fullname: Yang, Jiang-yu organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 3 givenname: Jing-jing surname: Wang fullname: Wang, Jing-jing organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 4 givenname: Shu-fei surname: Yuan fullname: Yuan, Shu-fei organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 5 givenname: Xin-jing surname: Yue fullname: Yue, Xin-jing organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 6 givenname: Zheng orcidid: 0000-0001-9971-6006 surname: Zhang fullname: Zhang, Zheng organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 7 givenname: Ya-qi surname: Zhang fullname: Zhang, Ya-qi organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 8 givenname: Jun-yan surname: Meng fullname: Meng, Jun-yan organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China – sequence: 9 givenname: Yue-zhong orcidid: 0000-0001-8336-6638 surname: Li fullname: Li, Yue-zhong organization: State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38747603$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstu1DAUQC1URMvQD2CDLLFhk8FvJyuEIh4jVQIVWLCyHOdmJqPELnZSMX-P20xLi8TGtuzj4_vwc3TigweEXlKyppSVb8d0SBOMaU0oo6Rg_Ak6Y1xXhSRanzxYn6LzlPaEEKq4pqx6hk55qYVWhJ-hn_XORusmiH2aepew9S3ux3H2gLvZu6kPPuHQ4WkHGHwbtuDDnHB9ufn29bKobcLHOHDv8Xj4HZrFZl-gp50dEpwf5xX68fHD9_pzcfHl06Z-f1FYUcqpcJ2UjW4tQEt4pajkomRcMeekK6koqxy2ZFY7IrTomjwQxYS1DelAOW35Cm0Wbxvs3lzFfrTxYILtze1GiFtjY05tAFNp5apKMNF2RJQt2A5INgvatJQLTbPr3eK6mpsRWgd-inZ4JH184vud2YZrkzvC9U1FV-jN0RDDrxnSZMY-ORgG6yHXzXAipZCCaJXR1_-g-zBHn2uVqVJVsqJKZGq9UDaN7C9Byc2bpbn7Beb2FxjG84VXD3O4D_6u5xmgC-BiSClCd4_8X_oHUGXB1g |
Cites_doi | 10.1093/nar/gkx150 10.1073/pnas.1803440115 10.7554/eLife.50374 10.1186/s40168-020-00824-x 10.1016/j.ijbiomac.2019.04.056 10.1093/nar/gkaa946 10.1128/JB.00788-16 10.1038/nrmicro3241 10.1038/s41467-020-16366-7 10.1186/s12934-017-0758-x 10.1038/s41421-020-0160-4 10.1128/JB.02035-14 10.4161/rna.24160 10.1111/j.1574-6976.2009.00185.x 10.1186/s40793-015-0121-y 10.1098/rstb.2018.0087 10.1038/nrmicro3569 10.1093/nar/gkt606 10.1089/crispr.2020.0059 10.1016/j.cell.2017.11.032 10.1038/s41586-021-03951-z 10.1111/mmi.12152 10.1093/molbev/msy194 10.1038/s41586-020-1936-2 10.1002/anie.202014671 10.7554/eLife.27601 10.1021/acs.biochem.9b00735 10.1073/pnas.76.11.5952 10.1038/srep28566 10.3390/v10070374 10.1016/j.mib.2011.03.005 10.1099/ijsem.0.004213 10.1016/j.meegid.2021.104881 10.1016/j.xpro.2020.100039 10.1128/jb.179.24.7748-7758.1997 10.1038/s41564-020-00794-8 10.1146/annurev-biochem-072911-172315 10.1016/j.ygeno.2020.11.030 10.1146/annurev-ecolsys-121415-032428 10.1128/mSystems.01211-20 10.1093/nar/gkt1154 10.1007/s10142-015-0433-4 10.1128/AEM.02143-07 10.1128/jb.172.1.484-487.1990 10.1126/science.1138140 10.1038/s41579-019-0299-x 10.1007/BF00338394 10.1128/JB.00575-16 10.1016/j.tim.2022.11.005 10.1093/nar/gkab301 10.1016/j.jgg.2021.02.012 10.1016/0012-1606(86)90368-4 10.1007/s00239-005-0223-z 10.1038/s41564-017-0012-7 10.1093/nar/gku971 10.3390/microorganisms8050720 10.1021/acssynbio.1c00444 10.1128/mSphere.00235-20 10.1101/pdb.prot095141 10.1016/s0378-1119(96)00546-x 10.3389/fbioe.2021.758561 10.1038/s41592-020-00980-w 10.1016/j.mib.2023.102353 10.1038/s41576-019-0172-9 10.1093/nar/gky475 10.1093/nar/gkz217 10.1038/nature21059 10.4161/rna.24046 10.1093/nar/gkz915 10.1089/crispr.2021.0021 10.1080/15476286.2018.1493330 10.1007/0-387-30747-8_3 10.1128/mSystems.00934-20 10.3390/v10110602 10.3390/microorganisms7110551 10.1093/bioinformatics/btq413 10.1073/pnas.1905421116 10.1128/mr.60.1.70-102.1996 10.1126/science.aar4416 10.1093/nar/gkv1044 10.1039/b901287g 10.1093/nar/gky425 10.1186/s12934-018-0867-1 10.1042/BST20130038 10.1016/j.molcel.2018.02.028 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Hu et al. Copyright © 2024 Hu et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2024 Hu et al. 2024 Hu et al. |
Copyright_xml | – notice: Copyright © 2024 Hu et al. – notice: Copyright © 2024 Hu et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2024 Hu et al. 2024 Hu et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1128/msystems.01210-23 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2379-5077 |
Editor | Nikel, Pablo Ivan |
Editor_xml | – sequence: 1 givenname: Pablo Ivan surname: Nikel fullname: Nikel, Pablo Ivan |
ExternalDocumentID | oai_doaj_org_article_976c99424df048deafe0a7c41bd13471 PMC11237760 01210-23 38747603 10_1128_msystems_01210_23 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MOST | National Key Research and Development Program of China (NKPs) grantid: 2021YFC2101000 – fundername: MOST | National Natural Science Foundation of China (NSFC) grantid: 32070030 – fundername: | Natural Science Foundation of Shandong Province () grantid: ZR2019BC041 – fundername: MOST | National Key Research and Development Program of China (NKPs) grantid: 2018YFA0901704 – fundername: MOST | National Key Research and Development Program of China (NKPs) grantid: 2018YFA0900400 – fundername: MOST | National Key Research and Development Program of China (NKPs) grantid: 2021YFC2101000 funderid: https://doi.org/10.13039/501100012166 – fundername: MOST | National Key Research and Development Program of China (NKPs) grantid: 2018YFA0900400 funderid: https://doi.org/10.13039/501100012166 – fundername: 山东省科学技术厅 | Natural Science Foundation of Shandong Province (山东省自然科学基金) grantid: ZR2019BC041 – fundername: MOST | National Key Research and Development Program of China (NKPs) grantid: 2018YFA0901704 funderid: https://doi.org/10.13039/501100012166 – fundername: ; grantid: 2018YFA0901704 – fundername: ; grantid: 32070030 – fundername: ; grantid: 2018YFA0900400 – fundername: ; grantid: ZR2019BC041 – fundername: ; grantid: 2021YFC2101000 |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ACPRK ADBBV AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBS FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RHI RPM RSF UKHRP CGR CUY CVF ECM EIF NPM PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-a485t-cf55b7daeed0396153482362cc5c8148901652a7c0474fb4740624aab0fe6c7a3 |
IEDL.DBID | M48 |
ISSN | 2379-5077 |
IngestDate | Wed Aug 27 01:20:34 EDT 2025 Thu Aug 21 18:32:18 EDT 2025 Fri Jul 11 12:10:43 EDT 2025 Fri Jul 25 11:52:13 EDT 2025 Tue Jun 25 17:12:33 EDT 2024 Mon Jul 21 05:51:28 EDT 2025 Tue Jul 01 02:59:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | CRISPR-Cas immunity Myxococcus xanthus target tracing myxobacteria |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a485t-cf55b7daeed0396153482362cc5c8148901652a7c0474fb4740624aab0fe6c7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0001-8336-6638 0000-0001-9971-6006 0000-0002-4941-658X |
OpenAccessLink | https://journals.asm.org/doi/10.1128/msystems.01210-23 |
PMID | 38747603 |
PQID | 3086959164 |
PQPubID | 2045591 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_976c99424df048deafe0a7c41bd13471 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11237760 proquest_miscellaneous_3055454076 proquest_journals_3086959164 asm2_journals_10_1128_msystems_01210_23 pubmed_primary_38747603 crossref_primary_10_1128_msystems_01210_23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-18 |
PublicationDateYYYYMMDD | 2024-06-18 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | mSystems |
PublicationTitleAbbrev | mSystems |
PublicationTitleAlternate | mSystems |
PublicationYear | 2024 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Russel, J, Pinilla-Redondo, R, Mayo-Muñoz, D, Shah, SA, Sørensen, SJ (B74) 2020; 3 Asnicar, F, Thomas, AM, Beghini, F, Mengoni, C, Manara, S, Manghi, P, Zhu, QY, Bolzan, M, Cumbo, F, May, U, Sanders, JG, Zolfo, M, Kopylova, E, Pasolli, E, Knight, R, Mirarab, S, Huttenhower, C, Segata, N (B76) 2020; 11 Peng, R, Wang, Y, Feng, W, Yue, X, Chen, J, Hu, X, Li, Z, Sheng, D, Zhang, Y, Li, Y (B26) 2018; 17 Li, ZK, Xia, CY, Wang, YX, Li, X, Qiao, Y, Li, CY, Zhou, J, Zhang, L, Ye, XF, Huang, Y, Cui, ZL (B18) 2019; 132 Makarova, KS, Wolf, YI, Alkhnbashi, OS, Costa, F, Shah, SA, Saunders, SJ, Barrangou, R, Brouns, SJJ, Charpentier, E, Haft, DH, Horvath, P, Moineau, S, Mojica, FJM, Terns, RM, Terns, MP, White, MF, Yakunin, AF, Garrett, RA, van der Oost, J, Backofen, R, Koonin, EV (B9) 2015; 13 Waite, DW, Chuvochina, M, Pelikan, C, Parks, DH, Yilmaz, P, Wagner, M, Loy, A, Naganuma, T, Nakai, R, Whitman, WB, Hahn, MW, Kuever, J, Hugenholtz, P (B20) 2020; 70 Yan, WX, Chong, S, Zhang, H, Makarova, KS, Koonin, EV, Cheng, DR, Scott, DA (B35) 2018; 70 Sorek, R, Lawrence, CM, Wiedenheft, B (B51) 2013; 82 Singh, A, Gaur, M, Sharma, V, Khanna, P, Bothra, A, Bhaduri, A, Mondal, AK, Dash, D, Singh, Y, Misra, R (B63) 2021; 6 Makarova, KS, Wolf, YI, Iranzo, J, Shmakov, SA, Alkhnbashi, OS, Brouns, SJJ, Charpentier, E, Cheng, D, Haft, DH, Horvath, P (B10) 2020; 18 Westra, ER, Buckling, A, Fineran, PC (B7) 2014; 12 Kaiser, D (B83) 1979; 76 Letunic, I, Bork, P (B78) 2021; 49 Parks, DH, Rinke, C, Chuvochina, M, Chaumeil, PA, Woodcroft, BJ, Evans, PN, Hugenholtz, P, Tyson, GW (B66) 2017; 2 Green, MR, Sambrook, J (B84) 2019; 2019 Chen, Y, Zeng, ZF, She, QX, Han, WY (B4) 2023; 31 Li, Y, Pan, S, Zhang, Y, Ren, M, Feng, M, Peng, N, Chen, L, Liang, YX, She, Q (B12) 2016; 44 Vasse, M, Wielgoss, S (B43) 2018; 10 Rajagopalan, R, Kroos, L (B22) 2017; 199 Hu, WF, Niu, L, Yue, XJ, Zhu, LL, Hu, W, Li, YZ, Wu, C (B57) 2021; 10 Zhang, JP, Li, XL, Neises, A, Chen, WQ, Hu, LP, Ji, GZ, Yu, JY, Xu, J, Yuan, WP, Cheng, T, Zhang, XB (B38) 2016; 6 Zallot, R, Oberg, N, Gerlt, JA (B81) 2019; 58 Müller, S, Strack, SN, Ryan, SE, Shawgo, M, Walling, A, Harris, S, Chambers, C, Boddicker, J, Kirby, JR (B72) 2016; 198 Barrangou, R, Fremaux, C, Deveau, H, Richards, M, Boyaval, P, Moineau, S, Romero, DA, Horvath, P (B3) 2007; 315 Muñoz-Dorado, J, Moraleda-Muñoz, A, Marcos-Torres, FJ, Contreras-Moreno, FJ, Martin-Cuadrado, AB, Schrader, JM, Higgs, PI, Pérez, J (B52) 2019; 8 Rollie, C, Chevallereau, A, Watson, BNJ, Chyou, TY, Fradet, O, McLeod, I, Fineran, PC, Brown, CM, Gandon, S, Westra, ER (B70) 2020; 578 Westra, ER, Dowling, AJ, Broniewski, JM, van Houte, S (B31) 2016; 47 Hille, F, Richter, H, Wong, SP, Bratovič, M, Ressel, S, Charpentier, E (B6) 2018; 172 Volke, DC, Orsi, E, Nikel, PI (B8) 2023; 75 Chen, XJ, Han, K, Feng, J, Zhuo, L, Li, YJ, Li, YZ (B46) 2016; 11 Kroos, L, Kuspa, A, Kaiser, D (B21) 1986; 117 Lange, SJ, Alkhnbashi, OS, Rose, D, Will, S, Backofen, R (B36) 2013; 41 Pourcel, C, Touchon, M, Villeriot, N, Vernadet, JP, Couvin, D, Toffano-Nioche, C, Vergnaud, G (B28) 2020; 48 Lin, J, Feng, M, Zhang, H, She, Q (B55) 2020; 6 Xu, Z, Li, Y, Yan, A (B14) 2020; 1 Kroos, L, Kuspa, A, Kaiser, D (B71) 1990; 172 Dion, MB, Labrie, SJ, Shah, SA, Moineau, S (B80) 2018; 10 Dworkin, M (B15) 1996; 60 Hou, S, Brenes-Álvarez, M, Reimann, V, Alkhnbashi, OS, Backofen, R, Muro-Pastor, AM, Hess, WR (B64) 2019; 16 Mosterd, C, Moineau, S (B61) 2020; 5 Ye, X, Li, Z, Luo, X, Wang, W, Li, Y, Li, R, Zhang, B, Qiao, Y, Zhou, J, Fan, J, Wang, H, Huang, Y, Cao, H, Cui, Z, Zhang, R (B19) 2020; 8 Guy, L, Kultima, JR, Andersson, SGE (B79) 2010; 26 Shimkets, LJ, Dworkin, M, Reichenbach, H, Dworkin, M, Falkow, S, Rosenberg, E, Schleifer, KH, Stackebrandt, E (B47) 2006; 7 Biswas, A, Gagnon, JN, Brouns, SJJ, Fineran, PC, Brown, CM (B82) 2013; 10 Shimkets, LJ, Asher, SJ (B58) 1988; 211 Godde, JS, Bickerton, A (B69) 2006; 62 Couvin, D, Bernheim, A, Toffano-Nioche, C, Touchon, M, Michalik, J, Néron, B, Rocha, EPC, Vergnaud, G, Gautheret, D, Pourcel, C (B75) 2018; 46 Wang, Y, Yue, X, Yuan, S, Hong, Y, Hu, W, Li, Y (B27) 2021; 9 Liu, Y, Yao, Q, Zhu, H (B68) 2019; 7 Deng, L, Garrett, RA, Shah, SA, Peng, X, She, Q (B56) 2013; 87 Ueki, T, Inouye, S, Inouye, M (B54) 1996; 183 Fallah, MS, Mohebbi, A, Yasaghi, M, Ghaemi, EA (B62) 2021; 92 Berleman, JE, Kirby, JR (B16) 2009; 33 Pei, Z, Sadiq, FA, Han, X, Zhao, J, Zhang, H, Ross, RP, Lu, W, Chen, W (B41) 2021; 6 Roux, S, Páez-Espino, D, Chen, I-MA, Palaniappan, K, Ratner, A, Chu, K, Reddy, TBK, Nayfach, S, Schulz, F, Call, L, Neches, RY, Woyke, T, Ivanova, NN, Eloe-Fadrosh, EA, Kyrpides, NC (B42) 2021; 49 Sharma, G, Yao, AI, Smaldone, GT, Liang, J, Long, M, Facciotti, MT, Singer, M (B53) 2021; 113 Terns, MP, Terns, RM (B2) 2011; 14 Silas, S, Lucas-Elio, P, Jackson, SA, Aroca-Crevillén, A, Hansen, LL, Fineran, PC, Fire, AZ, Sánchez-Amat, A (B29) 2017; 6 Koonin, EV, Makarova, KS (B33) 2019; 374 Koonin, EV, Makarova, KS, Wolf, YI, Krupovic, M (B39) 2020; 21 Martínez Arbas, S, Narayanasamy, S, Herold, M, Lebrun, LA, Hoopmann, MR, Li, S, Lam, TJ, Kunath, BJ, Hicks, ND, Liu, CM, Price, LB, Laczny, CC, Gillece, JD, Schupp, JM, Keim, PS, Moritz, RL, Faust, K, Tang, H, Ye, Y, Skupin, A, May, P, Muller, EEL, Wilmes, P (B40) 2020; 6 Burstein, D, Harrington, LB, Strutt, SC, Probst, AJ, Anantharaman, K, Thomas, BC, Doudna, JA, Banfield, JF (B67) 2017; 542 Wang, X, Wu, B, Sui, X, Zhang, Z, Liu, T, Li, Y, Hu, G, He, M, Peng, N (B59) 2021; 48 Wallace, RA, Black, WP, Yang, XS, Yang, ZM (B23) 2014; 196 Yang, YJ, Wang, Y, Li, ZF, Gong, Y, Zhang, P, Hu, WC, Sheng, DH, Li, YZ (B25) 2017; 16 Hu, C, Almendros, C, Nam, KH, Costa, AR, Vink, JNA, Haagsma, AC, Bagde, SR, Brouns, SJJ, Ke, A (B48) 2021; 598 Shmakov, SA, Makarova, KS, Wolf, YI, Severinov, KV, Koonin, EV (B1) 2018; 115 Luo, ML, Mullis, AS, Leenay, RT, Beisel, CL (B11) 2015; 43 Csörgő, B, León, LM, Chau-Ly, IJ, Vasquez-Rifo, A, Berry, JD, Mahendra, C, Crawford, ED, Lewis, JD, Bondy-Denomy, J (B60) 2020; 17 Bernal-Bernal, D, Abellón-Ruiz, J, Iniesta, AA, Pajares-Martínez, E, Bastida-Martínez, E, Fontes, M, Padmanabhan, S, Elías-Arnanz, M (B24) 2018; 46 Nethery, MA, Korvink, M, Makarova, KS, Wolf, YI, Koonin, EV, Barrangou, R (B37) 2021; 4 Wenzel, SC, Müller, R (B17) 2009; 5 Makarova, KS, Wolf, YI, Koonin, EV (B32) 2013; 41 Pan, MC, Nethery, MA, Hidalgo-Cantabrana, C, Barrangou, R (B50) 2020; 8 Hidalgo-Cantabrana, C, Goh, YJ, Pan, MC, Sanozky-Dawes, R, Barrangou, R (B13) 2019; 116 Stachler, A-E, Turgeman-Grott, I, Shtifman-Segal, E, Allers, T, Marchfelder, A, Gophna, U (B73) 2017; 45 Panter, F, Bader, CD, Müller, R (B45) 2021; 60 Land, M, Hauser, L, Jun, S-R, Nookaew, I, Leuze, MR, Ahn, T-H, Karpinets, T, Lund, O, Kora, G, Wassenaar, T, Poudel, S, Ussery, DW (B65) 2015; 15 Zhao, JY, Zhong, L, Shen, MJ, Xia, ZJ, Cheng, QX, Sun, X, Zhao, GP, Li, YZ, Qin, ZJ (B44) 2008; 74 Wielgoss, S, Wolfensberger, R, Sun, L, Fiegna, F, Velicer, GJ (B30) 2019; 363 Almendros, C, Nobrega, FL, McKenzie, RE, Brouns, SJJ (B49) 2019; 47 Wu, SS, Kaiser, D (B85) 1997; 179 Hein, S, Scholz, I, Voß, B, Hess, WR (B34) 2013; 10 Li, M, Wang, R, Zhao, DH, Xiang, H (B5) 2014; 42 Yu, GC, Lam, TTY, Zhu, HC, Guan, Y (B77) 2018; 35 |
References_xml | – ident: e_1_3_4_74_2 doi: 10.1093/nar/gkx150 – ident: e_1_3_4_2_2 doi: 10.1073/pnas.1803440115 – ident: e_1_3_4_53_2 doi: 10.7554/eLife.50374 – ident: e_1_3_4_20_2 doi: 10.1186/s40168-020-00824-x – ident: e_1_3_4_19_2 doi: 10.1016/j.ijbiomac.2019.04.056 – ident: e_1_3_4_43_2 doi: 10.1093/nar/gkaa946 – ident: e_1_3_4_23_2 doi: 10.1128/JB.00788-16 – ident: e_1_3_4_8_2 doi: 10.1038/nrmicro3241 – ident: e_1_3_4_77_2 doi: 10.1038/s41467-020-16366-7 – ident: e_1_3_4_26_2 doi: 10.1186/s12934-017-0758-x – ident: e_1_3_4_56_2 doi: 10.1038/s41421-020-0160-4 – ident: e_1_3_4_24_2 doi: 10.1128/JB.02035-14 – ident: e_1_3_4_35_2 doi: 10.4161/rna.24160 – ident: e_1_3_4_17_2 doi: 10.1111/j.1574-6976.2009.00185.x – ident: e_1_3_4_47_2 doi: 10.1186/s40793-015-0121-y – ident: e_1_3_4_34_2 doi: 10.1098/rstb.2018.0087 – ident: e_1_3_4_10_2 doi: 10.1038/nrmicro3569 – ident: e_1_3_4_37_2 doi: 10.1093/nar/gkt606 – ident: e_1_3_4_75_2 doi: 10.1089/crispr.2020.0059 – ident: e_1_3_4_7_2 doi: 10.1016/j.cell.2017.11.032 – ident: e_1_3_4_49_2 doi: 10.1038/s41586-021-03951-z – ident: e_1_3_4_57_2 doi: 10.1111/mmi.12152 – ident: e_1_3_4_78_2 doi: 10.1093/molbev/msy194 – ident: e_1_3_4_71_2 doi: 10.1038/s41586-020-1936-2 – ident: e_1_3_4_46_2 doi: 10.1002/anie.202014671 – ident: e_1_3_4_30_2 doi: 10.7554/eLife.27601 – ident: e_1_3_4_82_2 doi: 10.1021/acs.biochem.9b00735 – ident: e_1_3_4_84_2 doi: 10.1073/pnas.76.11.5952 – ident: e_1_3_4_39_2 doi: 10.1038/srep28566 – ident: e_1_3_4_44_2 doi: 10.3390/v10070374 – ident: e_1_3_4_3_2 doi: 10.1016/j.mib.2011.03.005 – ident: e_1_3_4_21_2 doi: 10.1099/ijsem.0.004213 – ident: e_1_3_4_63_2 doi: 10.1016/j.meegid.2021.104881 – ident: e_1_3_4_15_2 doi: 10.1016/j.xpro.2020.100039 – ident: e_1_3_4_86_2 doi: 10.1128/jb.179.24.7748-7758.1997 – ident: e_1_3_4_41_2 doi: 10.1038/s41564-020-00794-8 – ident: e_1_3_4_52_2 doi: 10.1146/annurev-biochem-072911-172315 – ident: e_1_3_4_54_2 doi: 10.1016/j.ygeno.2020.11.030 – ident: e_1_3_4_32_2 doi: 10.1146/annurev-ecolsys-121415-032428 – ident: e_1_3_4_42_2 doi: 10.1128/mSystems.01211-20 – ident: e_1_3_4_6_2 doi: 10.1093/nar/gkt1154 – ident: e_1_3_4_66_2 doi: 10.1007/s10142-015-0433-4 – ident: e_1_3_4_45_2 doi: 10.1128/AEM.02143-07 – ident: e_1_3_4_72_2 doi: 10.1128/jb.172.1.484-487.1990 – ident: e_1_3_4_4_2 doi: 10.1126/science.1138140 – ident: e_1_3_4_11_2 doi: 10.1038/s41579-019-0299-x – ident: e_1_3_4_59_2 doi: 10.1007/BF00338394 – ident: e_1_3_4_73_2 doi: 10.1128/JB.00575-16 – ident: e_1_3_4_5_2 doi: 10.1016/j.tim.2022.11.005 – ident: e_1_3_4_79_2 doi: 10.1093/nar/gkab301 – ident: e_1_3_4_60_2 doi: 10.1016/j.jgg.2021.02.012 – ident: e_1_3_4_22_2 doi: 10.1016/0012-1606(86)90368-4 – ident: e_1_3_4_70_2 doi: 10.1007/s00239-005-0223-z – ident: e_1_3_4_67_2 doi: 10.1038/s41564-017-0012-7 – ident: e_1_3_4_12_2 doi: 10.1093/nar/gku971 – ident: e_1_3_4_51_2 doi: 10.3390/microorganisms8050720 – ident: e_1_3_4_58_2 doi: 10.1021/acssynbio.1c00444 – ident: e_1_3_4_62_2 doi: 10.1128/mSphere.00235-20 – ident: e_1_3_4_85_2 doi: 10.1101/pdb.prot095141 – ident: e_1_3_4_55_2 doi: 10.1016/s0378-1119(96)00546-x – ident: e_1_3_4_28_2 doi: 10.3389/fbioe.2021.758561 – ident: e_1_3_4_61_2 doi: 10.1038/s41592-020-00980-w – ident: e_1_3_4_9_2 doi: 10.1016/j.mib.2023.102353 – ident: e_1_3_4_40_2 doi: 10.1038/s41576-019-0172-9 – ident: e_1_3_4_25_2 doi: 10.1093/nar/gky475 – ident: e_1_3_4_50_2 doi: 10.1093/nar/gkz217 – ident: e_1_3_4_68_2 doi: 10.1038/nature21059 – ident: e_1_3_4_83_2 doi: 10.4161/rna.24046 – ident: e_1_3_4_29_2 doi: 10.1093/nar/gkz915 – ident: e_1_3_4_38_2 doi: 10.1089/crispr.2021.0021 – ident: e_1_3_4_65_2 doi: 10.1080/15476286.2018.1493330 – ident: e_1_3_4_48_2 doi: 10.1007/0-387-30747-8_3 – ident: e_1_3_4_64_2 doi: 10.1128/mSystems.00934-20 – ident: e_1_3_4_81_2 doi: 10.3390/v10110602 – ident: e_1_3_4_69_2 doi: 10.3390/microorganisms7110551 – ident: e_1_3_4_80_2 doi: 10.1093/bioinformatics/btq413 – ident: e_1_3_4_14_2 doi: 10.1073/pnas.1905421116 – ident: e_1_3_4_16_2 doi: 10.1128/mr.60.1.70-102.1996 – ident: e_1_3_4_31_2 doi: 10.1126/science.aar4416 – ident: e_1_3_4_13_2 doi: 10.1093/nar/gkv1044 – ident: e_1_3_4_18_2 doi: 10.1039/b901287g – ident: e_1_3_4_76_2 doi: 10.1093/nar/gky425 – ident: e_1_3_4_27_2 doi: 10.1186/s12934-018-0867-1 – ident: e_1_3_4_33_2 doi: 10.1042/BST20130038 – ident: e_1_3_4_36_2 doi: 10.1016/j.molcel.2018.02.028 – volume: 74 start-page: 1980 year: 2008 end-page: 1987 ident: B44 article-title: Discovery of the autonomously replicating plasmid pMF1 from Myxococcus fulvus and development of a gene cloning system in Myxococcus xanthus publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02143-07 – volume: 46 start-page: W246 year: 2018 end-page: W251 ident: B75 article-title: CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gky425 – volume: 11 year: 2016 ident: B46 article-title: The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 (M 206081) publication-title: Stand Genomic Sci doi: 10.1186/s40793-015-0121-y – volume: 542 start-page: 237 year: 2017 end-page: 241 ident: B67 article-title: New CRISPR-Cas systems from uncultivated microbes publication-title: Nature doi: 10.1038/nature21059 – volume: 172 start-page: 1239 year: 2018 end-page: 1259 ident: B6 article-title: The biology of CRISPR-Cas: backward and forward publication-title: Cell doi: 10.1016/j.cell.2017.11.032 – volume: 35 start-page: 3041 year: 2018 end-page: 3043 ident: B77 article-title: Two methods for mapping and visualizing associated data on phylogeny using Ggtree publication-title: Mol Biol Evol doi: 10.1093/molbev/msy194 – volume: 42 start-page: 2483 year: 2014 end-page: 2492 ident: B5 article-title: Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1154 – volume: 75 start-page: 102353 year: 2023 ident: B8 article-title: Emergent CRISPR-Cas-based technologies for engineering non-model bacteria publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2023.102353 – volume: 363 start-page: 1342 year: 2019 end-page: 1345 ident: B30 article-title: Social genes are selection hotspots in kin groups of a soil microbe publication-title: Science doi: 10.1126/science.aar4416 – volume: 41 start-page: 8034 year: 2013 end-page: 8044 ident: B36 article-title: CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt606 – volume: 21 start-page: 119 year: 2020 end-page: 131 ident: B39 article-title: Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0172-9 – volume: 70 start-page: 327 year: 2018 end-page: 339 ident: B35 article-title: Cas13D is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein publication-title: Mol Cell doi: 10.1016/j.molcel.2018.02.028 – volume: 5 start-page: 567 year: 2009 end-page: 574 ident: B17 article-title: Myxobacteria-'microbial factories' for the production of bioactive secondary metabolites publication-title: Mol Biosyst doi: 10.1039/b901287g – volume: 12 start-page: 317 year: 2014 end-page: 326 ident: B7 article-title: CRISPR-Cas systems: beyond adaptive immunity publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3241 – volume: 132 start-page: 1235 year: 2019 end-page: 1243 ident: B18 article-title: Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.04.056 – volume: 45 start-page: 5208 year: 2017 end-page: 5216 ident: B73 article-title: High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx150 – volume: 8 start-page: 720 year: 2020 ident: B50 article-title: Comprehensive mining and characterization of CRISPR-Cas systems in Bifidobacterium publication-title: Microorganisms doi: 10.3390/microorganisms8050720 – volume: 116 start-page: 15774 year: 2019 end-page: 15783 ident: B13 article-title: Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1905421116 – volume: 8 year: 2019 ident: B52 article-title: Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program publication-title: Elife doi: 10.7554/eLife.50374 – volume: 15 start-page: 141 year: 2015 end-page: 161 ident: B65 article-title: Insights from 20 years of bacterial genome sequencing publication-title: Funct Integr Genomics doi: 10.1007/s10142-015-0433-4 – volume: 198 start-page: 3335 year: 2016 end-page: 3344 ident: B72 article-title: Identification of functions affecting predator-prey interactions between Myxococcus xanthus and Bacillus subtilis publication-title: J Bacteriol doi: 10.1128/JB.00575-16 – volume: 58 start-page: 4169 year: 2019 end-page: 4182 ident: B81 article-title: The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways publication-title: Biochemistry doi: 10.1021/acs.biochem.9b00735 – volume: 374 year: 2019 ident: B33 article-title: Origins and evolution of CRISPR-Cas systems publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2018.0087 – volume: 48 start-page: D535 year: 2020 end-page: D544 ident: B28 article-title: CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz915 – volume: 7 start-page: 31 year: 2006 end-page: 115 ident: B47 article-title: The myxobacteria publication-title: The prokaryotes: proteobacteria: delta, epsilon subclass ;p In Vol ;Springer New York, New York, NY – volume: 82 start-page: 237 year: 2013 end-page: 266 ident: B51 article-title: CRISPR-mediated adaptive immune systems in bacteria and archaea publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-072911-172315 – volume: 3 start-page: 462 year: 2020 end-page: 469 ident: B74 article-title: Crisprcastyper: automated identification, annotation, and classification of CRISPR-Cas loci publication-title: CRISPR J doi: 10.1089/crispr.2020.0059 – volume: 10 year: 2018 ident: B80 article-title: CRISPRStudio: a user-friendly software for rapid CRISPR array visualization publication-title: Viruses doi: 10.3390/v10110602 – volume: 76 start-page: 5952 year: 1979 end-page: 5956 ident: B83 article-title: Social gliding is correlated with the presence of pili in Myxococcus xanthus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.76.11.5952 – volume: 4 start-page: 558 year: 2021 end-page: 574 ident: B37 article-title: CRISPRclassify: repeat-based classification of CRISPR Loci publication-title: CRISPR J doi: 10.1089/crispr.2021.0021 – volume: 43 start-page: 674 year: 2015 end-page: 681 ident: B11 article-title: Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression publication-title: Nucleic Acids Res doi: 10.1093/nar/gku971 – volume: 10 start-page: 852 year: 2013 end-page: 864 ident: B34 article-title: Adaptation and modification of three CRISPR loci in two closely related cyanobacteria publication-title: RNA Biol doi: 10.4161/rna.24160 – volume: 26 start-page: 2334 year: 2010 end-page: 2335 ident: B79 article-title: genoPlotR: comparative gene and genome visualization in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq413 – volume: 18 start-page: 67 year: 2020 end-page: 83 ident: B10 article-title: Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0299-x – volume: 6 year: 2020 ident: B55 article-title: Characterization of a novel type III CRISPR-Cas effector provides new insights into the allosteric activation and suppression of the Cas10 DNase publication-title: Cell Discov doi: 10.1038/s41421-020-0160-4 – volume: 17 start-page: 1183 year: 2020 end-page: 1190 ident: B60 article-title: A compact Cascade-Cas3 system for targeted genome engineering publication-title: Nat Methods doi: 10.1038/s41592-020-00980-w – volume: 172 start-page: 484 year: 1990 end-page: 487 ident: B71 article-title: Defects in fruiting body development caused by Tn5 lac insertions in Myxococcus xanthus publication-title: J Bacteriol doi: 10.1128/jb.172.1.484-487.1990 – volume: 117 start-page: 252 year: 1986 end-page: 266 ident: B21 article-title: A global analysis of developmentally regulated genes in Myxococcus xanthus publication-title: Dev Biol doi: 10.1016/0012-1606(86)90368-4 – volume: 183 start-page: 153 year: 1996 end-page: 157 ident: B54 article-title: Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker publication-title: Gene doi: 10.1016/s0378-1119(96)00546-x – volume: 14 start-page: 321 year: 2011 end-page: 327 ident: B2 article-title: CRISPR-based adaptive immune systems publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2011.03.005 – volume: 6 year: 2021 ident: B41 article-title: Comprehensive scanning of prophages in Lactobacillus: distribution, diversity, antibiotic resistance genes, and linkages with CRISPR-Cas systems publication-title: mSystems doi: 10.1128/mSystems.01211-20 – volume: 7 year: 2019 ident: B68 article-title: Meta-16S rRNA gene phylogenetic reconstruction reveals the astonishing diversity of cosmopolitan myxobacteria publication-title: Microorganisms doi: 10.3390/microorganisms7110551 – volume: 8 year: 2020 ident: B19 article-title: A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community publication-title: Microbiome doi: 10.1186/s40168-020-00824-x – volume: 9 year: 2021 ident: B27 article-title: Internal promoters and their effects on the transcription of operon genes for epothilone production in Myxococcus xanthus publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.758561 – volume: 10 start-page: 817 year: 2013 end-page: 827 ident: B82 article-title: CRISPRTarget: bioinformatic prediction and analysis of crRNA targets publication-title: RNA Biol doi: 10.4161/rna.24046 – volume: 113 start-page: 120 year: 2021 end-page: 134 ident: B53 article-title: Global gene expression analysis of the Myxococcus xanthus developmental time course publication-title: Genomics doi: 10.1016/j.ygeno.2020.11.030 – volume: 10 start-page: 2904 year: 2021 end-page: 2909 ident: B57 article-title: Characterization of constitutive promoters for the elicitation of secondary metabolites in myxobacteria publication-title: ACS Synth Biol doi: 10.1021/acssynbio.1c00444 – volume: 60 start-page: 8081 year: 2021 end-page: 8088 ident: B45 article-title: The sandarazols are cryptic and structurally unique plasmid-encoded toxins from a rare myxobacterium publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202014671 – volume: 598 start-page: 515 year: 2021 end-page: 520 ident: B48 article-title: Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas publication-title: Nature doi: 10.1038/s41586-021-03951-z – volume: 16 year: 2017 ident: B25 article-title: Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in publication-title: Microb Cell Fact doi: 10.1186/s12934-017-0758-x – volume: 10 year: 2018 ident: B43 article-title: Bacteriophages of Myxococcus xanthus, a social bacterium publication-title: Viruses doi: 10.3390/v10070374 – volume: 115 start-page: E5307 year: 2018 end-page: E5316 ident: B1 article-title: Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1803440115 – volume: 17 year: 2018 ident: B26 article-title: CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus publication-title: Microb Cell Fact doi: 10.1186/s12934-018-0867-1 – volume: 5 year: 2020 ident: B61 article-title: Characterization of a type II-A CRISPR-CAS system in Streptococcus mutans publication-title: mSphere doi: 10.1128/mSphere.00235-20 – volume: 62 start-page: 718 year: 2006 end-page: 729 ident: B69 article-title: The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes publication-title: J Mol Evol doi: 10.1007/s00239-005-0223-z – volume: 6 year: 2021 ident: B63 article-title: Comparative genomic analysis of Mycobacteriaceae reveals horizontal gene transfer-mediated evolution of the CRISPR-CAS system in the Mycobacterium tuberculosis complex publication-title: mSystems doi: 10.1128/mSystems.00934-20 – volume: 315 start-page: 1709 year: 2007 end-page: 1712 ident: B3 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science doi: 10.1126/science.1138140 – volume: 6 year: 2017 ident: B29 article-title: Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems publication-title: Elife doi: 10.7554/eLife.27601 – volume: 92 start-page: 104881 year: 2021 ident: B62 article-title: CRISPR-CAS systems in proteus mirabilis publication-title: Infect Genet Evol doi: 10.1016/j.meegid.2021.104881 – volume: 16 start-page: 518 year: 2019 end-page: 529 ident: B64 article-title: CRISPR-Cas systems in multicellular cyanobacteria publication-title: RNA Biology doi: 10.1080/15476286.2018.1493330 – volume: 33 start-page: 942 year: 2009 end-page: 957 ident: B16 article-title: Deciphering the hunting strategy of a bacterial wolfpack publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2009.00185.x – volume: 60 start-page: 70 year: 1996 end-page: 102 ident: B15 article-title: Recent advances in the social and developmental biology of the myxobacteria publication-title: Microbiol Rev doi: 10.1128/mr.60.1.70-102.1996 – volume: 46 start-page: 6726 year: 2018 end-page: 6745 ident: B24 article-title: Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function sigma/anti-sigma pair and a global regulatory complex publication-title: Nucleic Acids Res doi: 10.1093/nar/gky475 – volume: 13 start-page: 722 year: 2015 end-page: 736 ident: B9 article-title: An updated evolutionary classification of CRISPR-Cas systems publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3569 – volume: 578 start-page: 149 year: 2020 end-page: 153 ident: B70 article-title: Targeting of temperate phages drives loss of type I CRISPR-Cas systems publication-title: Nature doi: 10.1038/s41586-020-1936-2 – volume: 11 year: 2020 ident: B76 article-title: Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0 publication-title: Nat Commun doi: 10.1038/s41467-020-16366-7 – volume: 199 year: 2017 ident: B22 article-title: The dev operon regulates the timing of sporulation during Myxococcus xanthus development publication-title: J Bacteriol doi: 10.1128/JB.00788-16 – volume: 47 start-page: 307 year: 2016 end-page: 331 ident: B31 article-title: Evolution and ecology of CRISPR publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev-ecolsys-121415-032428 – volume: 41 start-page: 1392 year: 2013 end-page: 1400 ident: B32 article-title: The basic building blocks and evolution of CRISPR-Cas systems publication-title: Biochem Soc Trans doi: 10.1042/BST20130038 – volume: 1 year: 2020 ident: B14 article-title: Repurposing the native type I-F CRISPR-Cas system in Pseudomonas aeruginosa for genome editing publication-title: STAR Protoc doi: 10.1016/j.xpro.2020.100039 – volume: 196 start-page: 4036 year: 2014 end-page: 4043 ident: B23 article-title: A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production publication-title: J Bacteriol doi: 10.1128/JB.02035-14 – volume: 6 year: 2016 ident: B38 article-title: Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency publication-title: Sci Rep doi: 10.1038/srep28566 – volume: 48 start-page: 115 year: 2021 end-page: 122 ident: B59 article-title: CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis publication-title: J Genet Genomics doi: 10.1016/j.jgg.2021.02.012 – volume: 70 start-page: 5972 year: 2020 end-page: 6016 ident: B20 article-title: Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.004213 – volume: 31 start-page: 405 year: 2023 end-page: 418 ident: B4 article-title: The abortive infection functions of CRISPR-CAS and Argonaute publication-title: Trends Microbiol doi: 10.1016/j.tim.2022.11.005 – volume: 44 start-page: e34 year: 2016 end-page: e34 ident: B12 article-title: Harnessing type I and type III CRISPR-Cas systems for genome editing publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1044 – volume: 87 start-page: 1088 year: 2013 end-page: 1099 ident: B56 article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus publication-title: Mol Microbiol doi: 10.1111/mmi.12152 – volume: 6 start-page: 123 year: 2020 end-page: 135 ident: B40 article-title: Roles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics publication-title: Nat Microbiol doi: 10.1038/s41564-020-00794-8 – volume: 211 start-page: 63 year: 1988 end-page: 71 ident: B58 article-title: Use of recombination techniques to examine the structure of the Csg locus of Myxococcus xanthus publication-title: Mol Gen Genet doi: 10.1007/BF00338394 – volume: 179 start-page: 7748 year: 1997 end-page: 7758 ident: B85 article-title: Regulation of expression of the pilA gene in Myxococcus xanthus publication-title: J Bacteriol doi: 10.1128/jb.179.24.7748-7758.1997 – volume: 2 start-page: 1533 year: 2017 end-page: 1542 ident: B66 article-title: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life publication-title: Nat Microbiol doi: 10.1038/s41564-017-0012-7 – volume: 49 start-page: D764 year: 2021 end-page: D775 ident: B42 article-title: IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses publication-title: Nucleic Acids Research doi: 10.1093/nar/gkaa946 – volume: 2019 year: 2019 ident: B84 article-title: Polymerase chain reaction (PCR) amplification of GC-Rich templates publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.prot095141 – volume: 49 start-page: W293 year: 2021 end-page: W296 ident: B78 article-title: Interactive tree of life (iTOL) V5: an online tool for phylogenetic tree display and annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab301 – volume: 47 start-page: 5223 year: 2019 end-page: 5230 ident: B49 article-title: Cas4-Cas1 fusions drive efficient PAM selection and control CRISPR adaptation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz217 |
SSID | ssj0001637129 |
Score | 2.2738533 |
Snippet | Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes... The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to... ABSTRACTThe clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms... ABSTRACT The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0121023 |
SubjectTerms | Bacteriology Clustered Regularly Interspaced Short Palindromic Repeats - genetics CRISPR CRISPR-Cas CRISPR-Cas Systems - genetics Datasets DNA repair Genes Genetic engineering Genome, Bacterial - genetics Genomes Gram-negative bacteria Homology Immune system immunity myxobacteria Myxococcales - genetics Myxococcus xanthus Phages Phylogeny Plasmids Prokaryotes Proteins Research Article Social behavior Social organization target tracing |
SummonAdditionalLinks | – databaseName: Open Access Journals from American Society for Microbiology dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ShEIvJW362DyKCoFCwamshy0fN0tD0kJb0i6kJyFZEt3Dekt2A8m_z0i2N3EJJRcfbMkezUMzY2k-ARxSxyt0jGWG3sdnwiueVQrN3cbsQNaqsi3a57fidCq-XMiLDSj6WpiOg8sjs5ynhfy1ZTP1ad6iGy-PIhAZzRh_AluSVQINcms8nn7_evd3peAlerJuGfPBvjgH4zfYwB8l2P6HYs1_t0ze80En2_C8Cx7JuJX2C9jwzUt42h4nebMDvydD9GViGkdmsQDEk-i_koqRRSAY9BHfuEUL0Eom52c_f5xnE7MkHflk1pD5zTXaenqbeQXTk8-_JqdZd3RCZoSSq6wOUtrSGfSANApDRgwb9FV1jfzHDKiKVUzMlDUVpQgWL7RgwhhLgy_q0vDXsNksGv8WSKwf8blUtsytkI5ZHxwrLA_BekFDPoIPkY-6l5xOaQVTuue4ThzXjI_gY89q_bfF0vhf4-MojHXDCIOdbqBS6M6qNMZSdVUhgS7gTOS8CZ7ioERuXSyRRdr2e1He0ccxi6skhsViBO_Xj9Gq4lKJaTwyXkcctIRNWIzgTSv5NSVcYQpWUKRQDXRiQOrwSTP7k5C7cai8xL67j-bZHjxjGEbFzWm52ofN1eWVP8AwaGXfdTp_C-p3Biw priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZhodBLaZM-nEdRIVAouJH1sOVjuzSkPYSQNpCehGRJdA_rDdkNNP--M5J3uy4lvfTigyWb0WjG34wlfUPIMfOiBWBsSkCfUMqgRdlqcHeH2YHqdOsy2-d5fXYlv1yr661SX7gnLNMDZ8WdAFx2bSu59BGMzQcbA7NNJyvn8RRkSnwA87aSqfR3pRYNINmwjAnf4JN5ZkZevkcSM1ZieaKJXc75CI8Sbf_fYs0_t0xuYdDpU_JkCB7phyz0M7IT-l3yKJeTvN8j36dj9mVqe09neAAkUMSvZGJ0ESkEfTT0fpEJWun08vPXi8tyapd0EJ_Oejq__wm-nt5mn5Or00_fpmflUDqhtFKrVdlFpVzjLSAgw8lQyGEDWNV1oH_IgFo8xcRBj0w2Mjq4sJpLax2Loe4aK16QSb_owytC8fxIqJR2TeWk8tyF6HntRIwuSBargrxFPZrB9pcmpRVcm7XGTdK44aIg79aqNjeZS-Ohzh9xMjYdkQY73QDjMINxmH8ZR0EO11P5Wz4BWVyrICyWBXmzaQavwqUS2wdQvEEetMRNWBfkZZ75jSRCQwpWM5BQj2xiJOq4pZ_9SMzdMFTRwLP7_2NwB-QxhwgL961V-pBMVrd34QgipJV7nZzhF3FPDr0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA-6Ivgifrt6SgRBEOK1TdKkT6KLx-mDyOnB-hSSJjn3YdvzuoL33zuTZnetyL30oUnLZD4yM_n4DSEvC88bcIyKgfcJTATNWaPB3B1mB7LVjRvRPj_Xx6fi01Iu84LbkI9VbufENFH7vsU18kMOsXcjIZgRb89_MqwahburuYTGdXIDoctQq9VS7ddYaq7An-XNTJiJD9cjPvLwBqHMCoZFimZ2WFcTr5TA-_8Xcf57cPIvT3R0h9zOISR9N8r8LrkWunvk5lhU8vI--b6YYjBT23m6wmsggaIXS4pG-0gh9KOh8_0I00oXJx-_fjlhCzvQTD5ddXR9-RssPv3NPiCnRx--LY5ZLqDArNByw9oopVPegh8sUCQSkWzAY7UtSAHyoAbvMlVWtYVQIjp4FHUlrHVFDHWrLH9IZl3fhceE4i2SUErtVOmE9JUL0Ve14zG6IIpYzskr5KPJFjCYlFxU2mw5bhLHTcXn5PWW1eZ8RNS4qvN7FMauI4Jhpxf9xZnJtmUgomqbBgj0EeYjH2wMBQxKlM7jRVmg7WAryj19e32akxe7ZrAt3DCxXQDGG0RDSwiF9Zw8GiW_o4RrSMTqAijUE52YkDpt6VY_En43DJUr-PbJ1XQ9JbcqiKDwXFqpD8hsc_ErPIMIaOOeJzX_A66ABjM priority: 102 providerName: ProQuest |
Title | Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38747603 https://journals.asm.org/doi/10.1128/msystems.01210-23 https://www.proquest.com/docview/3086959164 https://www.proquest.com/docview/3055454076 https://pubmed.ncbi.nlm.nih.gov/PMC11237760 https://doaj.org/article/976c99424df048deafe0a7c41bd13471 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8fy69c4lgiAIPdskbdIHkb3ljlPxPFYX1qeSNIkuuF1vd4Xb_95J2u5ZWQRfWugX05lM5jdp5zcAL2LDcgyMIsLoYyNuJYtyie6ufXaQljLXNdvnZXYx5u8n6WQH2vZWjQKXW1M7309qvPhxcnO9fosO_6YugJGvZzXp8fLE85PFEWW7sI-BSfiGBh8btB-WXDImktC3jDKRR4iERPOdc-tTcJJWyxntBKzA678NjP79T-UfQer8Ptxr0CUZ1MPhAHZs9QDu1P0m1w_h67BLz0xUZcjUV4hY4gNcGINk7giiQmIrM68ZXMlw9O7z1SgaqiVpxCfTiszWNzgZhKepRzA-P_syvIia3gqR4jJdRaVLUy2MwhAZe2ulnuQGg1lZooEwRcp9mRNVooy54E7jJs4oV0rHzmalUOwx7FXzyh4C8QUmNkmlFonmqaHaOkMzzZzTlscu6cFLr8eitW0R8g4qi1bjRdB4QVkPXrWqLn7WZBv_uvjUG2NzoefJDgfmi29F43YFgq0yz1FA43CqMlY5G-NL8UQbX0OLsh23pryVj2Gal6eIm3kPnm9Oo9v5bymqsqj4whOlBfLCrAdPastvJGESc7QsRgllZ0x0RO2eqabfA7U3vioTeO_T_9HEEdylCLX8D2yJPIa91eKXfYZQaaX7sCsmog_7g8H40wfcn55dXo36YeGhH5zjN3LgFqg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXxJuFAkYCISGFOo4TJweEYKHapaVCpZWWk7FjG_awSWkWwf4pfiMzTrLLItRbLznkpS_j8TxizzeEPGE2KcAxygi8j4uEy5OoyGG6G8wO0jIvTMv2eZCNj8X7aTrdIr_7WhjcVtnbxGCobV3iP_KdBGLvIoVgRrw6-R5h1yhcXe1baLRqseeWPyFla15O3sL4PuV8993RaBx1XQUiLfJ0EZU-TY20GpwDQ5wp0ruAGS9LgAbJQYEFPlzLkgkpvIEDy7jQ2jDvslLqBN57gVwEx8sw2ZNTuf6nkyUS_Ge3eAqWf2fe8jE3L5A6jUXYFGmgmznf8IKhWcD_Itx_N2r-5fl2r5GrXchKX7c6dp1sueoGudQ2sVzeJJ9Hm5zPVFeWzrDsxFH0mkGxae0phJrUVbZuaWHp6HDy6eNhNNIN7eDTWUXny19gYcLb9C1yfC6ivU0GVV25u4Ri1YqL09zI2IjUcuO85ZlJvDdOMB8PyTOUo-pmXKNCMsNz1UtcBYkrngzJ817U6qRl8Djr5jc4GKsbkXw7nKhPv6puLiuI4MqiAIDWg_2zTnvH4KNEbCwW5gK27X4o1_jW-jskj1eXYS7jAo2uHAheIftaYETMhuROO_IrJEkOiV_GAGG-oRMbUDevVLNvgS8cPjWR8Oy9s3E9IpfHRx_21f7kYO8-ucIhesM9cXG-TQaL0x_uAURfC_MwqDwlX857jv0Bt8dCAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeBAosEQkIysdfr1wEhmjZqKIqiQKVyWna9u5BDnFIHQf4av44ZPxKMUG-9-OCXPs_O7Mx4d74BeO6bMEPHmHjofawnbBp6WYrmrik7iPI00zXb5yQ-OhHvT6PTHfjd1sLQtsp2TqwmarPM6R_5IMTYO4swmBED12yLmB6M3p5996iDFK20tu00ahU5tuufmL6Vb8YHONYvOB8dfhoeeU2HAU-JNFp5uYsinRiFjsInzBFRveCUnucIExOFjIp9uEpyXyTCaTz4MRdKad_ZOE9UiO-9ArsJZUU92N0_nExn2z88cZigN22WUtEPDBY1O3P5mojUfI9aJPVUueAdn1i1DvhfvPvvts2__ODoJtxoAlj2rta4W7Bji9twtW5pub4Dn4ddBmimCsPmVIRiGfnQSs3Z0jEMPJktzLImiWXD2fjjdOYNVcka-GxesMX6F8431dvUXTi5FOHeg16xLOwDYFTDYoMo1UmgRWS4ts7wWIfOaSt8F_ThJclRNvZXyiq14alsJS4riUse9uFVK2p5VvN5XHTzPg3G5kai4q5OLM-_ysayJcZzeZYhQONwNjRWOevjR4lAGyrTRWx77VBu8W21uQ_PNpfRsmm5RhUWBS-Ji63iR4z7cL8e-Q2SMMU0MPYRYdrRiQ7U7pVi_q1iD8dPDRN89uHFuJ7CNbQv-WE8OX4E1zmGcrRBLkj3oLc6_2EfYyi20k8anWfw5bLN7A8bf0ed |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+and+immune+functions+of+the+endogenous+CRISPR-Cas+systems+in+myxobacteria&rft.jtitle=mSystems&rft.au=Hu%2C+Wei-feng&rft.au=Yang%2C+Jiang-yu&rft.au=Wang%2C+Jing-jing&rft.au=Yuan%2C+Shu-fei&rft.date=2024-06-18&rft.issn=2379-5077&rft.eissn=2379-5077&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1128%2Fmsystems.01210-23&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_msystems_01210_23 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon |