Bacterial Methylmercury Degradation in Florida Everglades Peat Sediment

Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently ≤0.1 d-1 and decreased with sediment depth....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 32; no. 17; pp. 2556 - 2563
Main Authors Marvin-DiPasquale, Mark C, Oremland, Ronald S
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.09.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently ≤0.1 d-1 and decreased with sediment depth. Higher k values were observed when shorter incubation times and lower MeHg amendment levels were used, and k increased 2-fold as in-situ MeHg concentrations were approached. The average floc layer k was 0.046 ± 0.023 d-1 (n = 17) for 1−2 day incubations. In-situ degradation rates were estimated to be 0.02−0.5 ng of MeHg (g of dry sediment)-1 d-1, increasing from eutrophied to pristine areas. Nitrate-respiring bacteria did not demethylate MeHg, and NO3 - addition partially inhibited degradation in some cases. MeHg degradation rates were not affected by PO4 3- addition. 14CO2 production in all samples indicated that oxidative demethylation (OD) was an important degradation mechanism. OD occurred over 5 orders of magnitude of applied MeHg concentration, with lowest limits [1−18 ng of MeHg (g of dry sediment)-1] in the range of in-situ MeHg levels. Sulfate reducers and methanogens were the primary agents of anaerobic OD, although it is suggested that methanogens dominate degradation at in-situ MeHg concentrations. Specific pathways of OD by these two microbial groups are proposed.
Bibliography:T01
1997080606
ark:/67375/TPS-GFR613B6-F
istex:97AE855C18ED323F9923513DF251F4ACB05CD8E0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0013-936X
1520-5851
DOI:10.1021/es971099l