Edge Functionalization of Structurally Defined Graphene Nanoribbons for Modulating the Self-Assembled Structures
Edge functionalization of bottom-up synthesized graphene nanoribbons (GNRs) with anthraquinone and naphthalene/perylene monoimide units has been achieved through a Suzuki coupling of polyphenylene precursors bearing bromo groups, prior to the intramolecular oxidative cyclo-dehydrogenation. High...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 46; pp. 16454 - 16457 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Edge functionalization of bottom-up synthesized graphene nanoribbons (GNRs) with anthraquinone and naphthalene/perylene monoimide units has been achieved through a Suzuki coupling of polyphenylene precursors bearing bromo groups, prior to the intramolecular oxidative cyclo-dehydrogenation. High efficiency of the substitution has been validated by MALDI-TOF MS analysis of the functionalized precursors and FT-IR, Raman, and XPS analyses of the resulting GNRs. Moreover, AFM measurements demonstrated the modulation of the self-assembling behavior of the edge-functionalized GNRs, revealing that GNR-PMI formed an intriguing rectangular network. This result suggests the possibility of programming the supramolecular architecture of GNRs by tuning the functional units. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.7b09031 |