Designing Sequence to Control Protein Function in an EF-Hand Protein

The extent of conformational change that calcium binding induces in EF-hand proteins is a key biochemical property specifying Ca2+ sensor versus signal modulator function. To understand how differences in amino acid sequence lead to differences in the response to Ca2+ binding, comparative analyses o...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 126; no. 19; pp. 5990 - 5998
Main Authors Bunick, Christopher G, Nelson, Melanie R, Mangahas, Sheryll, Hunter, Michael J, Sheehan, Jonathan H, Mizoue, Laura S, Bunick, Gerard J, Chazin, Walter J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 19.05.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The extent of conformational change that calcium binding induces in EF-hand proteins is a key biochemical property specifying Ca2+ sensor versus signal modulator function. To understand how differences in amino acid sequence lead to differences in the response to Ca2+ binding, comparative analyses of sequence and structures, combined with model building, were used to develop hypotheses about which amino acid residues control Ca2+-induced conformational changes. These results were used to generate a first design of calbindomodulin (CBM-1), a calbindin D9k re-engineered with 15 mutations to respond to Ca2+ binding with a conformational change similar to that of calmodulin. The gene for CBM-1 was synthesized, and the protein was expressed and purified. Remarkably, this protein did not exhibit any non-native-like molten globule properties despite the large number of mutations and the nonconservative nature of some of them. Ca2+-induced changes in CD intensity and in the binding of the hydrophobic probe, ANS, implied that CBM-1 does undergo Ca2+ sensorlike conformational changes. The X-ray crystal structure of Ca2+-CBM-1 determined at 1.44 Å resolution reveals the anticipated increase in hydrophobic surface area relative to the wild-type protein. A nascent calmodulin-like hydrophobic docking surface was also found, though it is occluded by the inter-EF-hand loop. The results from this first calbindomodulin design are discussed in terms of progress toward understanding the relationships between amino acid sequence, protein structure, and protein function for EF-hand CaBPs, as well as the additional mutations for the next CBM design.
Bibliography:istex:91B2047106C843AD02A23A9A84916F990486FCA4
ark:/67375/TPS-MVB5QMJ2-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0397456