Organic Reactivity Made Easy and Accurate with Automated Multireference Calculations

In organic reactivity studies, quantum chemical calculations play a pivotal role as the foundation of understanding and machine learning model development. While prevalent black-box methods like density functional theory (DFT) and coupled-cluster theory (e.g., CCSD­(T)) have significantly advanced o...

Full description

Saved in:
Bibliographic Details
Published inACS central science Vol. 10; no. 4; pp. 833 - 841
Main Authors Wardzala, Jacob J., King, Daniel S., Ogunfowora, Lawal, Savoie, Brett, Gagliardi, Laura
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In organic reactivity studies, quantum chemical calculations play a pivotal role as the foundation of understanding and machine learning model development. While prevalent black-box methods like density functional theory (DFT) and coupled-cluster theory (e.g., CCSD­(T)) have significantly advanced our understanding of chemical reactivity, they frequently fall short in describing multiconfigurational transition states and intermediates. Achieving a more accurate description necessitates the use of multireference methods. However, these methods have not been used at scale due to their often-faulty predictions without expert input. Here, we overcome this deficiency with automated multiconfigurational pair-density functional theory (MC-PDFT) calculations. We apply this method to 908 automatically generated organic reactions. We find 68% of these reactions present significant multiconfigurational character in which the automated multiconfigurational approach often provides a more accurate and/or efficient description than DFT and CCSD­(T). This work presents the first high-throughput application of automated multiconfigurational methods to reactivity, enabled by automated active space selection algorithms and the computation of electronic correlation with MC-PDFT on-top functionals. This approach can be used in a black-box fashion, avoiding significant active space inconsistency error in both single- and multireference cases and providing accurate multiconfigurational descriptions when needed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2374-7943
2374-7951
DOI:10.1021/acscentsci.3c01559