Integrated Digital Microfluidic Platform for Voltammetric Analysis

Digital microfluidics (DMF) is an emerging technique for manipulating small volumes of liquids. DMF is particularly well suited for analytical applications as it allows automated handling of discrete samples, and it has been integrated with several inline analysis techniques. However, examples of th...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 85; no. 18; pp. 8809 - 8816
Main Authors Dryden, Michael D. M, Rackus, Darius D. G, Shamsi, Mohtashim H, Wheeler, Aaron R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Digital microfluidics (DMF) is an emerging technique for manipulating small volumes of liquids. DMF is particularly well suited for analytical applications as it allows automated handling of discrete samples, and it has been integrated with several inline analysis techniques. However, examples of the integration of DMF with electroanalytical methods are notably scarce, and those that have been reported rely on external electrodes that impose limitations on complexity. To combine the full capabilities of DMF with voltammetry, we designed a platform featuring a three-electrode electrochemical cell integrated in a microfabricated DMF device, removing the need for external electrodes and allowing for complete droplet control. The performance of the DMF/voltammetry system is comparable to that of a commercial screen printed electrode, and the new platform was applied to generating a calibration series for acetaminophen with a limit of detection of 76 μM and good precision (4% average RSD), all with minimal human intervention. We propose that this platform and variations thereof may be a useful new tool for microscale electroanalysis and will be a complementary system to existing inline analysis techniques for DMF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/ac402003v