Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS

In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimid...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 91; no. 9; pp. 5591 - 5598
Main Authors Zhu, Peihua, Wang, Yucheng, Ma, Pan, Li, Shanshan, Fan, Fuqing, Cui, Kang, Ge, Shenguang, Zhang, Yan, Yu, Jinghua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.8b04497