Protein Influence on Charge-Asymmetry of the Primary Donor in Photosynthetic Bacterial Reaction Centers Containing a Heterodimer: Effects on Photophysical Properties and Electron Transfer
The substantial electronic distinctions between bacteriochlorophyll (BChl) and its Mg-free analogue bacteriopheophytin (BPh) are exploited in two sets of Rhodobacter capsulatus reaction center (RC) mutants that contain a heterodimeric BChl–BPh primary electron donor (D). The BPh component of the M-h...
Saved in:
Published in | The journal of physical chemistry. B Vol. 117; no. 15; pp. 4028 - 4041 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
18.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The substantial electronic distinctions between bacteriochlorophyll (BChl) and its Mg-free analogue bacteriopheophytin (BPh) are exploited in two sets of Rhodobacter capsulatus reaction center (RC) mutants that contain a heterodimeric BChl–BPh primary electron donor (D). The BPh component of the M-heterodimer (Mhd) or L-heterodimer (Lhd) obtains from substituting a Leu for His M200 or for His L173, respectively. Lhd-β and Mhd-β RCs serve as the initial templates in the two mutant sets, where β denotes that the L-side BPh acceptor (HL) has been replaced by a BChl (due to substituting His for Leu M212). Three variants each of Lhd-β and Mhd-β mutants were constructed: (1) a swap (denoted YF) of the native Phe (L181) and Tyr (M208) residues, which flank D and the nearby M- and L-side monomeric BChl cofactors, respectively, giving Tyr (L181) and Phe (M208); (2) addition of a hydrogen bond (denoted L131LH) to the ring V keto group of the L-macrocycle of D, via replacing the native Leu at L131 with His; (3) the combination of 1 and 2. A low yield of electron transfer (ET) to the M-side BPh (HM) is observed in all four Lhd-containing RCs. Comparison with the yield of ET to β on the L-side shows that electron density on the L-macrocycle of D* favors ET to the M-side cofactors and vice versa. Increasing or decreasing the electronic asymmetry of D* via the YF, L131LH mutations or the combination results in consistent trends in the characteristics of the long-wavelength ground state absorption band of D, the rate constant of internal conversion of D* to the ground state, and the rate constants for ET to both the L- and M-side cofactors. A surprising correlation is that an increase in the charge asymmetry in D* not only increases the D* internal-conversion rate constant, but also the rate constants for ET to both the L- and M-side cofactors, spanning time scales of tens of picoseconds to several nanoseconds. The YF swap has a previously unrecognized effect on the electronic asymmetry of D*, resulting in increased charge asymmetry for the Mhd and decreased charge asymmetry for the Lhd. This result indicates that the native Tyr (M208) and Phe (L181) in the wild-type RC promote an electron distribution in P* that is the reverse of that favorable for ET to the photoactive L-branch. This conclusion reinforces the view that the native configuration of these residues promotes ET to the L branch primarily by poising the free energies of the charge-separated states. Overall, this work addresses the extent to which electronic couplings complement energetics in underpinning the directionality of ET in the bacterial RC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp401138h |