Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways

We describe a flexible and broadly applicable energy refinement method, “nebterpolation,” for identifying and characterizing the reaction events in a molecular dynamics (MD) simulation. The new method is applicable to ab initio simulations with hundreds of atoms containing complex and multimolecular...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 12; no. 2; pp. 638 - 649
Main Authors Wang, Lee-Ping, McGibbon, Robert T, Pande, Vijay S, Martinez, Todd J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe a flexible and broadly applicable energy refinement method, “nebterpolation,” for identifying and characterizing the reaction events in a molecular dynamics (MD) simulation. The new method is applicable to ab initio simulations with hundreds of atoms containing complex and multimolecular reaction events. A key aspect of nebterpolation is smoothing of the reactive MD trajectory in internal coordinates to initiate the search for the reaction path on the potential energy surface. We apply nebterpolation to analyze the reaction events in an ab initio nanoreactor simulation that discovers new molecules and mechanisms, including a C–C coupling pathway for glycolaldehyde synthesis. We find that the new method, which incorporates information from the MD trajectory that connects reactants with products, produces a dramatically distinct set of minimum energy paths compared to existing approaches that start from information for the reaction end points alone. The energy refinement method described here represents a key component of an emerging simulation paradigm where molecular dynamics simulations are applied to discover the possible reaction mechanisms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.5b00830