Estimation of the Acid Dissociation Constant of Perfluoroalkyl Carboxylic Acids through an Experimental Investigation of their Water-to-Air Transport
The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–w...
Saved in:
Published in | Environmental science & technology Vol. 47; no. 19; pp. 11032 - 11039 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–water partition coefficients (K AWs) and do not volatilize from water. The neutral acids, however, have relatively high K AWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pK a. Knowledge of the pK as of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L–1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pK as of C4–11 PFCAs are <1.6. For PFOA, we derived a pK a of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pK as are below the investigated pH range (pK a <0.3). |
---|---|
AbstractList | The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L(-1) of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3).The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L(-1) of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3). The acid dissociation constants (pKₐs) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKₐ. Knowledge of the pKₐs of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L–¹ of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKₐs of C₄–₁₁ PFCAs are <1.6. For PFOA, we derived a pKₐ of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKₐs are below the investigated pH range (pKₐ <0.3). The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ~1 mu g L-1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3). The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–water partition coefficients (K AWs) and do not volatilize from water. The neutral acids, however, have relatively high K AWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pK a. Knowledge of the pK as of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L–1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pK as of C4–11 PFCAs are <1.6. For PFOA, we derived a pK a of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pK as are below the investigated pH range (pK a <0.3). The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ~1 μg L-1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3). [PUBLICATION ABSTRACT] The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L(-1) of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3). The acid dissociation constants (pK(a)s) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (K(AW)s) and do not volatilize from water. The neutral acids, however, have relatively high K(AW)s and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pK(a). Knowledge of the pK(a)s of PFCAs is therefore vital for,understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used similar to 1 mu g L-1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pK(a)s of C4-11 PFCAs are <1.6. For PFOA, we derived a pK(a) of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pK(a)s are below the investigated pH range (pK(a) <0.3). |
Author | Cousins, Ian T Berger, Urs Vierke, Lena |
AuthorAffiliation | Leuphana University Lüneburg Department of Applied Environmental Science (ITM) Federal Environment Agency, Section for Chemicals Institute of Sustainable and Environmental Chemistry Stockholm University |
AuthorAffiliation_xml | – name: Leuphana University Lüneburg – name: Stockholm University – name: Department of Applied Environmental Science (ITM) – name: Institute of Sustainable and Environmental Chemistry – name: Federal Environment Agency, Section for Chemicals |
Author_xml | – sequence: 1 givenname: Lena surname: Vierke fullname: Vierke, Lena email: Lena.Vierke@uba.de – sequence: 2 givenname: Urs surname: Berger fullname: Berger, Urs – sequence: 3 givenname: Ian T surname: Cousins fullname: Cousins, Ian T |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27788739$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23952814$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100881$$DView record from Swedish Publication Index |
BookMark | eNqF0ttqFDEYAOAgFbutXvgCMiCCgmNzTuZy2W61UNCLergLmWxmmzqbbJOMdvsevq_Z7rqWKvQqhHx_8h9yAPZ88BaA5wi-QxCjI5soxLxBN4_ACDEMayYZ2gMjCBGpG8K_7YODlC4hhJhA-QTsY9IwLBEdgV_TlN1CZxd8FboqX9hqbNysOnYpBeM2B5PgU9Y-r8UnG7t-CDHo_vuqryY6tuF61TtzG5fKDTEM84tK-2p6vbTRLazPuq9O_Q9bnprffcrF6qvONtY51OOyOY_ap2WI-Sl43Ok-2Wfb9RB8PpmeTz7UZx_fn07GZ7WmgudadFwLS7mVrLUtN4xJywVumGaQdtqIljYzg1pKpeS85WiGJLOQUEMFJq0mh-Dt5t700y6HVi1LujquVNBOHbsvYxXiXKVBIQilRIW_3vBlDFdDKUctXDK277W3YUgKrzssqKTyQYoYhEIizODDlFJCZMOxKPTlPXoZhuhLi4oiTUMwh7yoF1s1tAs721X1Z-oFvNoCnYzuu9J249JfJ4SUgjTFvdk4E0NK0XY7gqBa_zy1-3nFHt2zxuXbYeeoXf_fiG0W2qQ7dfzjfgOFKOas |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1039_C7NJ03026F crossref_primary_10_1016_j_cocis_2015_07_004 crossref_primary_10_1021_acs_est_1c02389 crossref_primary_10_1039_D1SC01276B crossref_primary_10_1515_revac_2023_0064 crossref_primary_10_1002_etc_5716 crossref_primary_10_1039_C9EM00290A crossref_primary_10_1021_acs_est_0c06212 crossref_primary_10_1186_s13750_017_0114_y crossref_primary_10_1016_j_envpol_2015_07_050 crossref_primary_10_1061__ASCE_EE_1943_7870_0002033 crossref_primary_10_1016_j_scitotenv_2022_156373 crossref_primary_10_1021_acs_est_7b06241 crossref_primary_10_1016_j_watres_2017_02_024 crossref_primary_10_1016_j_jhazmat_2023_132688 crossref_primary_10_1186_2047_2382_4_3 crossref_primary_10_3390_ijerph19116817 crossref_primary_10_1007_s00706_017_1970_4 crossref_primary_10_1016_j_jconhyd_2019_03_004 crossref_primary_10_1039_C8EM00102B crossref_primary_10_1016_j_geotexmem_2023_09_002 crossref_primary_10_1016_j_fluid_2023_113928 crossref_primary_10_1016_j_scitotenv_2015_03_111 crossref_primary_10_1021_acs_estlett_2c00452 crossref_primary_10_1016_j_envint_2021_106642 crossref_primary_10_1021_es500016s crossref_primary_10_1016_j_envpol_2016_10_089 crossref_primary_10_1039_D3EM00461A crossref_primary_10_1016_j_atmosenv_2024_120716 crossref_primary_10_1016_j_scitotenv_2023_166568 crossref_primary_10_1021_acs_estlett_1c01009 crossref_primary_10_1038_s41598_024_57140_9 crossref_primary_10_1039_D2EM00261B crossref_primary_10_3390_ijms22042148 crossref_primary_10_1016_j_watres_2020_116534 crossref_primary_10_1021_acs_est_9b04989 crossref_primary_10_1080_10934529_2016_1198191 crossref_primary_10_1021_acs_est_8b05564 crossref_primary_10_1016_j_envpol_2016_02_023 crossref_primary_10_1080_10643389_2019_1631988 crossref_primary_10_1016_j_chemosphere_2016_06_016 crossref_primary_10_1016_j_emcon_2019_06_002 crossref_primary_10_1016_j_surfin_2023_103271 crossref_primary_10_1016_j_scitotenv_2024_170971 crossref_primary_10_1039_C8EM00525G crossref_primary_10_1016_j_envres_2023_116156 crossref_primary_10_1016_j_cej_2019_122506 crossref_primary_10_1039_D1EM00252J crossref_primary_10_1016_j_jhazmat_2024_134242 crossref_primary_10_1016_j_ecoenv_2025_117902 crossref_primary_10_1016_j_microc_2022_107661 crossref_primary_10_1021_es404008g crossref_primary_10_1021_acs_est_0c00175 crossref_primary_10_1039_D4EM00485J crossref_primary_10_1016_j_scitotenv_2014_10_062 crossref_primary_10_1016_j_jece_2022_107201 crossref_primary_10_1016_j_scitotenv_2020_143793 crossref_primary_10_1016_j_scitotenv_2022_161145 crossref_primary_10_1021_acs_langmuir_3c03398 crossref_primary_10_1016_j_envpol_2013_11_011 crossref_primary_10_1016_j_jenvman_2019_109896 crossref_primary_10_1016_j_seppur_2022_122989 crossref_primary_10_1016_j_chemosphere_2014_06_069 crossref_primary_10_1016_j_watres_2016_07_024 crossref_primary_10_1016_j_envpol_2017_10_128 crossref_primary_10_1016_j_scitotenv_2022_152975 crossref_primary_10_1016_j_chemosphere_2024_142663 crossref_primary_10_1016_j_envpol_2017_01_020 crossref_primary_10_1080_09593330_2020_1812733 crossref_primary_10_1021_acs_est_5b03403 crossref_primary_10_1029_2019JD032182 crossref_primary_10_1016_j_jhazmat_2022_128886 crossref_primary_10_1002_etc_5425 crossref_primary_10_1016_j_chemosphere_2017_05_016 crossref_primary_10_1016_j_jhazmat_2024_136496 crossref_primary_10_1039_D3CP01390A crossref_primary_10_1016_j_atmosenv_2017_08_023 crossref_primary_10_1016_j_scitotenv_2018_01_167 crossref_primary_10_1039_C6CC07525H crossref_primary_10_1007_s11356_022_24785_w crossref_primary_10_1016_j_emcon_2017_03_001 crossref_primary_10_1002_aws2_1257 crossref_primary_10_1016_j_scitotenv_2019_04_055 crossref_primary_10_1016_j_isci_2022_103789 crossref_primary_10_1016_j_envpol_2023_121705 crossref_primary_10_1016_j_ecoenv_2019_01_027 crossref_primary_10_1016_j_envint_2016_01_023 crossref_primary_10_1016_j_scitotenv_2017_12_281 crossref_primary_10_1016_j_chroma_2022_462959 crossref_primary_10_1002_etc_3680 crossref_primary_10_1071_EN19296 crossref_primary_10_1002_ieam_4352 crossref_primary_10_1007_s42773_024_00410_6 crossref_primary_10_1016_j_trac_2018_04_003 crossref_primary_10_1039_D1EM00322D |
Cites_doi | 10.1007/978-1-4419-6880-7_3 10.1021/es703165m 10.1021/es051362f 10.1021/es900815a 10.1039/b703510a 10.1021/ja01149a122 10.1021/es60111a012 10.1002/ieam.258 10.1021/es201353v 10.1016/j.atmosenv.2010.11.011 10.1021/es702192c 10.1080/10934520802659620 10.1021/es070895g 10.1021/jo01059a090 10.1021/es802900n 10.1246/bcsj.74.667 10.1021/je600556d 10.1016/j.atmosenv.2008.09.008 10.1016/j.chroma.2012.03.023 10.1201/9781420032543 10.1186/2190-4715-24-16 10.1071/EN10144 10.1007/s00396-004-1228-7 10.1007/BF01242697 10.1071/EN10143 10.1039/C0EM00373E 10.1071/EN11007 10.1021/es0512475 10.1016/j.atmosenv.2011.12.009 10.1080/10934520903139811 10.1021/es900451s 10.1021/es0520767 10.1016/j.envpol.2010.09.023 10.1021/es049860w 10.1021/es104326w 10.1021/es802047v 10.1021/es303733d 10.1021/es703207s 10.1016/j.theochem.2010.03.003 10.1021/es1036173 10.1016/j.scitotenv.2010.03.015 10.1021/es703006d 10.1021/jp9051352 10.1071/EN10133 10.1021/es7032026 10.1021/es060233b 10.1021/je050070r 10.1021/jp807322x 10.1021/ac202414w |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Oct 1, 2013 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Oct 1, 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7UA F1W H97 L.G 7S9 L.6 ADTPV AOWAS DG7 |
DOI | 10.1021/es402691z |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 11039 |
ExternalDocumentID | oai_DiVA_org_su_100881 3091895731 23952814 27788739 10_1021_es402691z b331911116 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADMHC ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7UA F1W H97 L.G 7S9 L.6 ADTPV AGQPQ AOWAS DG7 |
ID | FETCH-LOGICAL-a476t-7f6a7e46e85beb6c558e67295a504fac7b49dc1b448866b61d185e034c4723ba3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Aug 21 07:02:56 EDT 2025 Fri Jul 11 09:51:30 EDT 2025 Fri Jul 11 16:06:59 EDT 2025 Fri Jul 11 00:55:59 EDT 2025 Mon Jun 30 04:50:22 EDT 2025 Mon Jul 21 06:04:02 EDT 2025 Wed Apr 02 07:21:52 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 04:28:39 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Emerging contaminant Organic perhalocompound Pollutant behavior Dissociation constant Environmental factor Acidity Air water interface Persistent organic pollutant Transport process Carboxylic acid Perfluoroalkyl acid Volatilization Organic fluorine compounds pH Air pollution Water pollution Organic compounds |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a476t-7f6a7e46e85beb6c558e67295a504fac7b49dc1b448866b61d185e034c4723ba3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23952814 |
PQID | 1439932606 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_100881 proquest_miscellaneous_2000274848 proquest_miscellaneous_1500781250 proquest_miscellaneous_1443389627 proquest_journals_1439932606 pubmed_primary_23952814 pascalfrancis_primary_27788739 crossref_primary_10_1021_es402691z crossref_citationtrail_10_1021_es402691z acs_journals_10_1021_es402691z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Rayne S. (ref42/cit42) 2010; 949 Vierke L. (ref12/cit12) 2012; 24 Müller C. E. (ref9/cit9) 2011; 45 Kaiser M. A. (ref17/cit17) 2010; 54 Goss K.-U. (ref21/cit21) 2009; 43 Arp H. P. H. (ref49/cit49) 2008; 42 Cousins I. T. (ref6/cit6) 2011; 8 Ahrens L. (ref45/cit45) 2011; 45 D́eon J. (ref55/cit55) 2006; 40 Reth M. (ref24/cit24) 2011; 8 Igarashi S. (ref29/cit29) 1992; 106 Young C. J. (ref56/cit56) 2008; 112 Vierke L. (ref46/cit46) 2011; 8 Cheng J. (ref26/cit26) 2009; 113 Goss K.-U. (ref30/cit30) 2008; 42 Schenker U. (ref57/cit57) 2008; 42 Ahrens L. (ref7/cit7) 2011; 13 Armitage J. M. (ref15/cit15) 2009; 43 Burns D. C. (ref20/cit20) 2008; 42 Mackay D. (ref40/cit40) 1975; 9 Ju X. (ref23/cit23) 2008; 42 Kutsuna S. (ref27/cit27) 2012; 49 Rayne S. (ref37/cit37) 2009; 44 Butt C. M. (ref14/cit14) 2010; 408 Braune B. M. (ref13/cit13) 2013; 47 Conder J. M. (ref8/cit8) 2008; 4 ref11/cit11 Wang Z. (ref34/cit34) 2011; 8 Martin J. W. (ref54/cit54) 2006; 40 Rayne S. (ref32/cit32) 2009; 44 Houde M. (ref5/cit5) 2011; 45 Mackay D. (ref39/cit39) 2001 Goss K.-U. (ref31/cit31) 2008; 42 Prevedouros K. (ref4/cit4) 2006; 40 Ellis D. A. (ref53/cit53) 2004; 38 McMurdo C. J. (ref52/cit52) 2008; 42 Weinberg I. (ref44/cit44) 2011; 159 ref43/cit43 Kissa E. (ref2/cit2) 2001 Steinle-Darling E. (ref33/cit33) 2008; 42 Burns D. C. (ref22/cit22) 2009; 43 Kutsuna S. (ref19/cit19) 2008; 42 Barton C. A. (ref16/cit16) 2007; 9 Brace N. O. (ref28/cit28) 1962; 27 Henne A. L. (ref35/cit35) 1951; 73 Vestergren R. (ref41/cit41) 2012; 1237 López-Fontán J. L. (ref25/cit25) 2005; 283 Schwarzenbach R. (ref38/cit38) 2003 Houde M. (ref10/cit10) 2006; 40 Moroi Y. (ref36/cit36) 2001; 74 Buck R. C. (ref3/cit3) 2011; 7 Li H. (ref18/cit18) 2007; 52 Ahrens L. (ref48/cit48) 2011; 83 Kaiser M. A. (ref50/cit50) 2005; 50 Seinfeld J. H. (ref51/cit51) 1998 Weinberg I. (ref47/cit47) 2011; 45 ref1/cit1 |
References_xml | – ident: ref1/cit1 doi: 10.1007/978-1-4419-6880-7_3 – volume: 42 start-page: 3710 year: 2008 ident: ref57/cit57 publication-title: Environ. Sci. Technol. doi: 10.1021/es703165m – volume-title: Fluorinated surfactants and repellents year: 2001 ident: ref2/cit2 – volume: 40 start-page: 864 year: 2006 ident: ref54/cit54 publication-title: Environ. Sci. Technol. doi: 10.1021/es051362f – volume: 43 start-page: 5152 year: 2009 ident: ref22/cit22 publication-title: Environ. Sci. Technol. doi: 10.1021/es900815a – volume: 9 start-page: 839 year: 2007 ident: ref16/cit16 publication-title: J. Environ. Monit. doi: 10.1039/b703510a – volume: 73 start-page: 2323 year: 1951 ident: ref35/cit35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01149a122 – volume: 9 start-page: 1178 year: 1975 ident: ref40/cit40 publication-title: Environ. Sci. Technol. doi: 10.1021/es60111a012 – ident: ref11/cit11 – volume: 7 start-page: 513 year: 2011 ident: ref3/cit3 publication-title: Integr. Environ. Assess. Manage. doi: 10.1002/ieam.258 – volume: 45 start-page: 8665 year: 2011 ident: ref9/cit9 publication-title: Environ. Sci. Technol. doi: 10.1021/es201353v – volume: 45 start-page: 935 year: 2011 ident: ref47/cit47 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.11.011 – volume: 42 start-page: 456 year: 2008 ident: ref30/cit30 publication-title: Environ. Sci. Technol. doi: 10.1021/es702192c – volume: 44 start-page: 317 year: 2009 ident: ref32/cit32 publication-title: J. Environ. Sci. Health, Part A doi: 10.1080/10934520802659620 – volume: 4 start-page: 995 year: 2008 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es070895g – volume: 27 start-page: 4491 year: 1962 ident: ref28/cit28 publication-title: J. Org. Chem. doi: 10.1021/jo01059a090 – volume: 43 start-page: 1134 year: 2009 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es802900n – volume: 74 start-page: 667 year: 2001 ident: ref36/cit36 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.74.667 – volume: 52 start-page: 1580 year: 2007 ident: ref18/cit18 publication-title: J. Chem. Eng. Data doi: 10.1021/je600556d – volume: 42 start-page: 8883 year: 2008 ident: ref19/cit19 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.09.008 – volume: 42 start-page: 456 year: 2008 ident: ref31/cit31 publication-title: Environ. Sci. Technol. doi: 10.1021/es702192c – volume-title: Atmospheric Chemistry and Physics year: 1998 ident: ref51/cit51 – volume: 1237 start-page: 64 year: 2012 ident: ref41/cit41 publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2012.03.023 – volume-title: Multimedia Environmental Models year: 2001 ident: ref39/cit39 doi: 10.1201/9781420032543 – volume: 24 start-page: 16 year: 2012 ident: ref12/cit12 publication-title: Environ. Sci. Eur. doi: 10.1186/2190-4715-24-16 – ident: ref43/cit43 – volume: 8 start-page: 339 year: 2011 ident: ref6/cit6 publication-title: Environ. Chem. doi: 10.1071/EN10144 – volume: 283 start-page: 862 year: 2005 ident: ref25/cit25 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-004-1228-7 – volume: 106 start-page: 37 year: 1992 ident: ref29/cit29 publication-title: Mikrochim. Acta doi: 10.1007/BF01242697 – volume: 8 start-page: 389 year: 2011 ident: ref34/cit34 publication-title: Environ. Chem. doi: 10.1071/EN10143 – volume: 42 year: 2008 ident: ref49/cit49 publication-title: Atmos. Environ. – volume-title: Environmental Organic Chemistry year: 2003 ident: ref38/cit38 – volume: 13 start-page: 20 year: 2011 ident: ref7/cit7 publication-title: J. Environ. Monit. doi: 10.1039/C0EM00373E – volume: 8 start-page: 381 year: 2011 ident: ref24/cit24 publication-title: Environ. Chem. doi: 10.1071/EN11007 – volume: 40 start-page: 32 year: 2006 ident: ref4/cit4 publication-title: Environ. Sci. Technol. doi: 10.1021/es0512475 – volume: 49 start-page: 411 year: 2012 ident: ref27/cit27 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.12.009 – volume: 44 start-page: 1145 year: 2009 ident: ref37/cit37 publication-title: J. Environ. Sci. Health, Part A doi: 10.1080/10934520903139811 – volume: 43 start-page: 5150 year: 2009 ident: ref21/cit21 publication-title: Environ. Sci. Technol. doi: 10.1021/es900451s – volume: 40 start-page: 1862 year: 2006 ident: ref55/cit55 publication-title: Environ. Sci. Technol. doi: 10.1021/es0520767 – volume: 54 start-page: 915 year: 2010 ident: ref17/cit17 publication-title: Ann. Occup. Hyg. – volume: 159 start-page: 125 year: 2011 ident: ref44/cit44 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.09.023 – volume: 38 start-page: 3316 year: 2004 ident: ref53/cit53 publication-title: Environ. Sci. Technol. doi: 10.1021/es049860w – volume: 45 start-page: 7962 year: 2011 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es104326w – volume: 42 start-page: 9283 year: 2008 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es802047v – volume: 47 start-page: 616 year: 2013 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es303733d – volume: 42 start-page: 5292 year: 2008 ident: ref33/cit33 publication-title: Environ. Sci. Technol. doi: 10.1021/es703207s – volume: 949 start-page: 60 year: 2010 ident: ref42/cit42 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/j.theochem.2010.03.003 – volume: 45 start-page: 8098 year: 2011 ident: ref45/cit45 publication-title: Environ. Sci. Technol. doi: 10.1021/es1036173 – volume: 408 start-page: 2936 year: 2010 ident: ref14/cit14 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.03.015 – volume: 42 start-page: 3538 year: 2008 ident: ref23/cit23 publication-title: Environ. Sci. Technol. doi: 10.1021/es703006d – volume: 113 start-page: 8152 year: 2009 ident: ref26/cit26 publication-title: J. Phys. Chem. A doi: 10.1021/jp9051352 – volume: 8 start-page: 363 year: 2011 ident: ref46/cit46 publication-title: Environ. Chem. doi: 10.1071/EN10133 – volume: 42 start-page: 3969 year: 2008 ident: ref52/cit52 publication-title: Environ. Sci. Technol. doi: 10.1021/es7032026 – volume: 40 start-page: 4138 year: 2006 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es060233b – volume: 50 start-page: 1841 year: 2005 ident: ref50/cit50 publication-title: J. Chem. Eng. Data doi: 10.1021/je050070r – volume: 112 start-page: 13542 year: 2008 ident: ref56/cit56 publication-title: J. Phys. Chem. A doi: 10.1021/jp807322x – volume: 83 start-page: 9622 year: 2011 ident: ref48/cit48 publication-title: Anal. Chem. doi: 10.1021/ac202414w |
SSID | ssj0002308 |
Score | 2.4420226 |
Snippet | The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values... The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values... The acid dissociation constants (pKₐs) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values... The acid dissociation constants (pK(a)s) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values... |
SourceID | swepub proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11032 |
SubjectTerms | Acidity Acids Air Applied sciences Atmospheric pollution Biological and physicochemical phenomena carboxylic acids Carboxylic Acids - chemistry Chemical compounds dissociation Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Estimating techniques Exact sciences and technology Experiments Fluorocarbons - chemistry Natural water pollution partition coefficients perfluorooctanoic acid Pollutants physicochemistry study: properties, effects, reactions, transport and distribution Pollution Pollution, environment geology sulfonic acids Volatilization Water - chemistry Water Pollutants, Chemical - chemistry Water treatment and pollution |
Title | Estimation of the Acid Dissociation Constant of Perfluoroalkyl Carboxylic Acids through an Experimental Investigation of their Water-to-Air Transport |
URI | http://dx.doi.org/10.1021/es402691z https://www.ncbi.nlm.nih.gov/pubmed/23952814 https://www.proquest.com/docview/1439932606 https://www.proquest.com/docview/1443389627 https://www.proquest.com/docview/1500781250 https://www.proquest.com/docview/2000274848 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100881 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFD4a4wWEuAwGgVGZm8RLtsT3PFZtpwkJhASDvkWO40jVqmZK0gf2P_i_HDdp2kE33hL5s-LY59ifZZ_vALy3yLllbEWoTWRCzvApoYKFnCtlcMRtbnyA8-cv8uycf5qK6R68u-EEn8YnrsYtjkziqztwl0p0Xs9_Rt_66RY5tF6nKUiYnK7lg7ar-qXH1teWngeXpsZeKNr0Fbv45V_ioasF5_QRjNdhO-09k4vjZZMd26t_VRxv-5fH8LAjnGTYWsgT2HOLA7i_JUN4AIeTTbQbQjt3r5_C7wlOAG1sIykLglyRDO0sJ-PZZlDJqGWYjUd8dVUxX5ZVaeYXv-ZkZKoMWz-f2VW9mnRZgYhZkMlWagGypfbRf2pWkZ9IhKuwKcMhvvQy7M_g_HTyfXQWdnkcQsOVbEJVSKMcl06LzGXSCqGdRFIvjIh4YazKeJLbOMOdopYyk3GOJMJFjFuuKMsMO4T9RblwL4BYoeIiV5GwnHNqkN06K4rCaZYxx3kewAAHOu38sE5XR-w0TvuOD-Dj2gZS26mg-2Qc813Qtz30spX-2AUaXDOkHkmVv6fJkgCO1pa11Sy_C0TiHMkA3vTF6Nj-tMYsXLn0GM6QTUqqbsEIT_GQo0Y3Y2irUaS5DuB5a9mbRrJEUB3zAD60pt6XeNXx8ezHMEXzTeull7bWOn75v-59Bfeod8TVbccj2G-qpXuNrK3JBiuv_QP3lD5q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgLABVPAqlgTIYBFI3KUn8zDKaTjVAWyHRwuwix3GkqNGkSjIL-h_8L9dJJjOthscukY8TP-61j2X7XITea-Dc3NfMlcpTLiXwFAaMuJQKoaDHdarsBefTMz69oJ9nbNbL5Ni7MFCIGr5Ut5v4K3UB_6OpYaXDQ__6LroHJCSw1hyNvw2jLlBpuYxWEBI-W6oIrWe1M5Cub8xA21eqhsbIuigWm2jmLQ3Rdt45ftwFMGpL3B43uTxcNMmhvr4l5vh_VXqCHvX0E0edvTxFd8x8Bz1cEyXcQbuT1d03gPbOXz9DvyYwHHQ3HXGZYWCOONJ5io_yVRfjccc3G4v4aqqsWJRVqYrLnwUeqyqBShS5bvPVuI8RhNUcT9YCDeA17Y_hV3mFfwAtrtymdCN4GUTZn6OL48n5eOr2UR1cRQVvXJFxJQzlRrLEJFwzJg0His8U82imtEhomGo_gXWj5DzhfgqUwniEaioCkiiyi7bm5dzsIayZ8LNUeExTSgMFXNdolmVGkoQYSlMHjaDd494r67jdcA_8eGh4Bx0sTSHWvSa6Dc1RbIK-G6BXnRDIJtDohj0NyEDYU5skdND-0sDWimXXhECjPe6gt0MyuLndu1FzUy4shhLgljwQf8EwS_iAsXp_xgSdYpGk0kEvOgNfFZKELJA-ddCHzuKHFKtBfpR_j2Iw4bheWKFrKf2X_2reN-j-9Pz0JD75dPblFXoQWN9sz0Huo62mWpjXwOeaZNQ68m-4NkbL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ZbtQwFLWgSAiEWAqFQBkMAomXlCRe8xjNorKVSlCYt8hxHCnqaDLK8kD_g__lOslkptWwvCXyceLlXvtYts9F6LUGzs19zVypPOVSAk9hwIhLqRAKelynyl5w_nzCj8_ohzmb9wtFexcGClHBl6p2E9969SrNeoUB_52pYLXDQ__iOrpht-usRUfjr8PIC3RariMWhITP10pC21ntLKSrS7PQnZWqoEGyLpLFLqp5RUe0nXtm99CXodTtkZPzo6ZOjvTFFUHH_6_WfXS3p6E46uzmAbpmlvvo9pY44T46mG7uwAG0HwSqh-jXFIaF7sYjLjIMDBJHOk_xJN90NR53vLO2iFNTZoumKAu1OP-5wGNVJlCRRa7bfBXuYwVhtcTTrYADeEsDZPhVXuIfQI9Lty7cCF4GcfZH6Gw2_TY-dvvoDq6igteuyLgShnIjWWISrhmThgPVZ4p5NFNaJDRMtZ_A-lFynnA_BWphPEI1FQFJFDlAe8tiaZ4grJnws1R4TFNKAwWc12iWZUaShBhKUweNoO3j3juruN14D_x4aHgHvV2bQ6x7bXQbomOxC_pqgK46QZBdoNElmxqQgbCnN0nooMO1kW0Vy64NgU573EEvh2Rwd7uHo5amaCyGEuCYPBB_wTBL_IC5en_GBJ1ykaTSQY87I98UkoQskD510JvO6ocUq0U-yb9HMZhxXDVW8FpK_-m_mvcFunk6mcWf3p98fIZuBdY92-OQh2ivLhvzHGhdnYxaX_4NDXhJTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+Acid+Dissociation+Constant+of+Perfluoroalkyl+Carboxylic+Acids+through+an+Experimental+Investigation+of+their+Water-to-Air+Transport&rft.jtitle=Environmental+science+%26+technology&rft.au=Vierke%2C+Lena&rft.au=Berger%2C+Urs&rft.au=Cousins%2C+Ian+T&rft.date=2013-10-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=47&rft.issue=19&rft.spage=11032&rft_id=info:doi/10.1021%2Fes402691z&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3091895731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |