Estimation of the Acid Dissociation Constant of Perfluoroalkyl Carboxylic Acids through an Experimental Investigation of their Water-to-Air Transport

The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–w...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 47; no. 19; pp. 11032 - 11039
Main Authors Vierke, Lena, Berger, Urs, Cousins, Ian T
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–water partition coefficients (K AWs) and do not volatilize from water. The neutral acids, however, have relatively high K AWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pK a. Knowledge of the pK as of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L–1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pK as of C4–11 PFCAs are <1.6. For PFOA, we derived a pK a of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pK as are below the investigated pH range (pK a <0.3).
AbstractList The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L(-1) of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3).The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L(-1) of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3).
The acid dissociation constants (pKₐs) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKₐ. Knowledge of the pKₐs of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L–¹ of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKₐs of C₄–₁₁ PFCAs are <1.6. For PFOA, we derived a pKₐ of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKₐs are below the investigated pH range (pKₐ <0.3).
The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ~1 mu g L-1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3).
The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from −0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air–water partition coefficients (K AWs) and do not volatilize from water. The neutral acids, however, have relatively high K AWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pK a. Knowledge of the pK as of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L–1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pK as of C4–11 PFCAs are <1.6. For PFOA, we derived a pK a of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pK as are below the investigated pH range (pK a <0.3).
The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ~1 μg L-1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3). [PUBLICATION ABSTRACT]
The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L(-1) of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3).
The acid dissociation constants (pK(a)s) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (K(AW)s) and do not volatilize from water. The neutral acids, however, have relatively high K(AW)s and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pK(a). Knowledge of the pK(a)s of PFCAs is therefore vital for,understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used similar to 1 mu g L-1 of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pK(a)s of C4-11 PFCAs are &lt;1.6. For PFOA, we derived a pK(a) of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pK(a)s are below the investigated pH range (pK(a) &lt;0.3).
Author Cousins, Ian T
Berger, Urs
Vierke, Lena
AuthorAffiliation Leuphana University Lüneburg
Department of Applied Environmental Science (ITM)
Federal Environment Agency, Section for Chemicals
Institute of Sustainable and Environmental Chemistry
Stockholm University
AuthorAffiliation_xml – name: Leuphana University Lüneburg
– name: Stockholm University
– name: Department of Applied Environmental Science (ITM)
– name: Institute of Sustainable and Environmental Chemistry
– name: Federal Environment Agency, Section for Chemicals
Author_xml – sequence: 1
  givenname: Lena
  surname: Vierke
  fullname: Vierke, Lena
  email: Lena.Vierke@uba.de
– sequence: 2
  givenname: Urs
  surname: Berger
  fullname: Berger, Urs
– sequence: 3
  givenname: Ian T
  surname: Cousins
  fullname: Cousins, Ian T
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27788739$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23952814$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100881$$DView record from Swedish Publication Index
BookMark eNqF0ttqFDEYAOAgFbutXvgCMiCCgmNzTuZy2W61UNCLergLmWxmmzqbbJOMdvsevq_Z7rqWKvQqhHx_8h9yAPZ88BaA5wi-QxCjI5soxLxBN4_ACDEMayYZ2gMjCBGpG8K_7YODlC4hhJhA-QTsY9IwLBEdgV_TlN1CZxd8FboqX9hqbNysOnYpBeM2B5PgU9Y-r8UnG7t-CDHo_vuqryY6tuF61TtzG5fKDTEM84tK-2p6vbTRLazPuq9O_Q9bnprffcrF6qvONtY51OOyOY_ap2WI-Sl43Ok-2Wfb9RB8PpmeTz7UZx_fn07GZ7WmgudadFwLS7mVrLUtN4xJywVumGaQdtqIljYzg1pKpeS85WiGJLOQUEMFJq0mh-Dt5t700y6HVi1LujquVNBOHbsvYxXiXKVBIQilRIW_3vBlDFdDKUctXDK277W3YUgKrzssqKTyQYoYhEIizODDlFJCZMOxKPTlPXoZhuhLi4oiTUMwh7yoF1s1tAs721X1Z-oFvNoCnYzuu9J249JfJ4SUgjTFvdk4E0NK0XY7gqBa_zy1-3nFHt2zxuXbYeeoXf_fiG0W2qQ7dfzjfgOFKOas
CODEN ESTHAG
CitedBy_id crossref_primary_10_1039_C7NJ03026F
crossref_primary_10_1016_j_cocis_2015_07_004
crossref_primary_10_1021_acs_est_1c02389
crossref_primary_10_1039_D1SC01276B
crossref_primary_10_1515_revac_2023_0064
crossref_primary_10_1002_etc_5716
crossref_primary_10_1039_C9EM00290A
crossref_primary_10_1021_acs_est_0c06212
crossref_primary_10_1186_s13750_017_0114_y
crossref_primary_10_1016_j_envpol_2015_07_050
crossref_primary_10_1061__ASCE_EE_1943_7870_0002033
crossref_primary_10_1016_j_scitotenv_2022_156373
crossref_primary_10_1021_acs_est_7b06241
crossref_primary_10_1016_j_watres_2017_02_024
crossref_primary_10_1016_j_jhazmat_2023_132688
crossref_primary_10_1186_2047_2382_4_3
crossref_primary_10_3390_ijerph19116817
crossref_primary_10_1007_s00706_017_1970_4
crossref_primary_10_1016_j_jconhyd_2019_03_004
crossref_primary_10_1039_C8EM00102B
crossref_primary_10_1016_j_geotexmem_2023_09_002
crossref_primary_10_1016_j_fluid_2023_113928
crossref_primary_10_1016_j_scitotenv_2015_03_111
crossref_primary_10_1021_acs_estlett_2c00452
crossref_primary_10_1016_j_envint_2021_106642
crossref_primary_10_1021_es500016s
crossref_primary_10_1016_j_envpol_2016_10_089
crossref_primary_10_1039_D3EM00461A
crossref_primary_10_1016_j_atmosenv_2024_120716
crossref_primary_10_1016_j_scitotenv_2023_166568
crossref_primary_10_1021_acs_estlett_1c01009
crossref_primary_10_1038_s41598_024_57140_9
crossref_primary_10_1039_D2EM00261B
crossref_primary_10_3390_ijms22042148
crossref_primary_10_1016_j_watres_2020_116534
crossref_primary_10_1021_acs_est_9b04989
crossref_primary_10_1080_10934529_2016_1198191
crossref_primary_10_1021_acs_est_8b05564
crossref_primary_10_1016_j_envpol_2016_02_023
crossref_primary_10_1080_10643389_2019_1631988
crossref_primary_10_1016_j_chemosphere_2016_06_016
crossref_primary_10_1016_j_emcon_2019_06_002
crossref_primary_10_1016_j_surfin_2023_103271
crossref_primary_10_1016_j_scitotenv_2024_170971
crossref_primary_10_1039_C8EM00525G
crossref_primary_10_1016_j_envres_2023_116156
crossref_primary_10_1016_j_cej_2019_122506
crossref_primary_10_1039_D1EM00252J
crossref_primary_10_1016_j_jhazmat_2024_134242
crossref_primary_10_1016_j_ecoenv_2025_117902
crossref_primary_10_1016_j_microc_2022_107661
crossref_primary_10_1021_es404008g
crossref_primary_10_1021_acs_est_0c00175
crossref_primary_10_1039_D4EM00485J
crossref_primary_10_1016_j_scitotenv_2014_10_062
crossref_primary_10_1016_j_jece_2022_107201
crossref_primary_10_1016_j_scitotenv_2020_143793
crossref_primary_10_1016_j_scitotenv_2022_161145
crossref_primary_10_1021_acs_langmuir_3c03398
crossref_primary_10_1016_j_envpol_2013_11_011
crossref_primary_10_1016_j_jenvman_2019_109896
crossref_primary_10_1016_j_seppur_2022_122989
crossref_primary_10_1016_j_chemosphere_2014_06_069
crossref_primary_10_1016_j_watres_2016_07_024
crossref_primary_10_1016_j_envpol_2017_10_128
crossref_primary_10_1016_j_scitotenv_2022_152975
crossref_primary_10_1016_j_chemosphere_2024_142663
crossref_primary_10_1016_j_envpol_2017_01_020
crossref_primary_10_1080_09593330_2020_1812733
crossref_primary_10_1021_acs_est_5b03403
crossref_primary_10_1029_2019JD032182
crossref_primary_10_1016_j_jhazmat_2022_128886
crossref_primary_10_1002_etc_5425
crossref_primary_10_1016_j_chemosphere_2017_05_016
crossref_primary_10_1016_j_jhazmat_2024_136496
crossref_primary_10_1039_D3CP01390A
crossref_primary_10_1016_j_atmosenv_2017_08_023
crossref_primary_10_1016_j_scitotenv_2018_01_167
crossref_primary_10_1039_C6CC07525H
crossref_primary_10_1007_s11356_022_24785_w
crossref_primary_10_1016_j_emcon_2017_03_001
crossref_primary_10_1002_aws2_1257
crossref_primary_10_1016_j_scitotenv_2019_04_055
crossref_primary_10_1016_j_isci_2022_103789
crossref_primary_10_1016_j_envpol_2023_121705
crossref_primary_10_1016_j_ecoenv_2019_01_027
crossref_primary_10_1016_j_envint_2016_01_023
crossref_primary_10_1016_j_scitotenv_2017_12_281
crossref_primary_10_1016_j_chroma_2022_462959
crossref_primary_10_1002_etc_3680
crossref_primary_10_1071_EN19296
crossref_primary_10_1002_ieam_4352
crossref_primary_10_1007_s42773_024_00410_6
crossref_primary_10_1016_j_trac_2018_04_003
crossref_primary_10_1039_D1EM00322D
Cites_doi 10.1007/978-1-4419-6880-7_3
10.1021/es703165m
10.1021/es051362f
10.1021/es900815a
10.1039/b703510a
10.1021/ja01149a122
10.1021/es60111a012
10.1002/ieam.258
10.1021/es201353v
10.1016/j.atmosenv.2010.11.011
10.1021/es702192c
10.1080/10934520802659620
10.1021/es070895g
10.1021/jo01059a090
10.1021/es802900n
10.1246/bcsj.74.667
10.1021/je600556d
10.1016/j.atmosenv.2008.09.008
10.1016/j.chroma.2012.03.023
10.1201/9781420032543
10.1186/2190-4715-24-16
10.1071/EN10144
10.1007/s00396-004-1228-7
10.1007/BF01242697
10.1071/EN10143
10.1039/C0EM00373E
10.1071/EN11007
10.1021/es0512475
10.1016/j.atmosenv.2011.12.009
10.1080/10934520903139811
10.1021/es900451s
10.1021/es0520767
10.1016/j.envpol.2010.09.023
10.1021/es049860w
10.1021/es104326w
10.1021/es802047v
10.1021/es303733d
10.1021/es703207s
10.1016/j.theochem.2010.03.003
10.1021/es1036173
10.1016/j.scitotenv.2010.03.015
10.1021/es703006d
10.1021/jp9051352
10.1071/EN10133
10.1021/es7032026
10.1021/es060233b
10.1021/je050070r
10.1021/jp807322x
10.1021/ac202414w
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Oct 1, 2013
Copyright_xml – notice: Copyright © 2013 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Oct 1, 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7UA
F1W
H97
L.G
7S9
L.6
ADTPV
AOWAS
DG7
DOI 10.1021/es402691z
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Biotechnology Research Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 11039
ExternalDocumentID oai_DiVA_org_su_100881
3091895731
23952814
27788739
10_1021_es402691z
b331911116
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADMHC
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7UA
F1W
H97
L.G
7S9
L.6
ADTPV
AGQPQ
AOWAS
DG7
ID FETCH-LOGICAL-a476t-7f6a7e46e85beb6c558e67295a504fac7b49dc1b448866b61d185e034c4723ba3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Aug 21 07:02:56 EDT 2025
Fri Jul 11 09:51:30 EDT 2025
Fri Jul 11 16:06:59 EDT 2025
Fri Jul 11 00:55:59 EDT 2025
Mon Jun 30 04:50:22 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Wed Apr 02 07:21:52 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 04:28:39 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Emerging contaminant
Organic perhalocompound
Pollutant behavior
Dissociation constant
Environmental factor
Acidity
Air water interface
Persistent organic pollutant
Transport process
Carboxylic acid
Perfluoroalkyl acid
Volatilization
Organic fluorine compounds
pH
Air pollution
Water pollution
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a476t-7f6a7e46e85beb6c558e67295a504fac7b49dc1b448866b61d185e034c4723ba3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23952814
PQID 1439932606
PQPubID 45412
PageCount 8
ParticipantIDs swepub_primary_oai_DiVA_org_su_100881
proquest_miscellaneous_2000274848
proquest_miscellaneous_1500781250
proquest_miscellaneous_1443389627
proquest_journals_1439932606
pubmed_primary_23952814
pascalfrancis_primary_27788739
crossref_primary_10_1021_es402691z
crossref_citationtrail_10_1021_es402691z
acs_journals_10_1021_es402691z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Rayne S. (ref42/cit42) 2010; 949
Vierke L. (ref12/cit12) 2012; 24
Müller C. E. (ref9/cit9) 2011; 45
Kaiser M. A. (ref17/cit17) 2010; 54
Goss K.-U. (ref21/cit21) 2009; 43
Arp H. P. H. (ref49/cit49) 2008; 42
Cousins I. T. (ref6/cit6) 2011; 8
Ahrens L. (ref45/cit45) 2011; 45
D́eon J. (ref55/cit55) 2006; 40
Reth M. (ref24/cit24) 2011; 8
Igarashi S. (ref29/cit29) 1992; 106
Young C. J. (ref56/cit56) 2008; 112
Vierke L. (ref46/cit46) 2011; 8
Cheng J. (ref26/cit26) 2009; 113
Goss K.-U. (ref30/cit30) 2008; 42
Schenker U. (ref57/cit57) 2008; 42
Ahrens L. (ref7/cit7) 2011; 13
Armitage J. M. (ref15/cit15) 2009; 43
Burns D. C. (ref20/cit20) 2008; 42
Mackay D. (ref40/cit40) 1975; 9
Ju X. (ref23/cit23) 2008; 42
Kutsuna S. (ref27/cit27) 2012; 49
Rayne S. (ref37/cit37) 2009; 44
Butt C. M. (ref14/cit14) 2010; 408
Braune B. M. (ref13/cit13) 2013; 47
Conder J. M. (ref8/cit8) 2008; 4
ref11/cit11
Wang Z. (ref34/cit34) 2011; 8
Martin J. W. (ref54/cit54) 2006; 40
Rayne S. (ref32/cit32) 2009; 44
Houde M. (ref5/cit5) 2011; 45
Mackay D. (ref39/cit39) 2001
Goss K.-U. (ref31/cit31) 2008; 42
Prevedouros K. (ref4/cit4) 2006; 40
Ellis D. A. (ref53/cit53) 2004; 38
McMurdo C. J. (ref52/cit52) 2008; 42
Weinberg I. (ref44/cit44) 2011; 159
ref43/cit43
Kissa E. (ref2/cit2) 2001
Steinle-Darling E. (ref33/cit33) 2008; 42
Burns D. C. (ref22/cit22) 2009; 43
Kutsuna S. (ref19/cit19) 2008; 42
Barton C. A. (ref16/cit16) 2007; 9
Brace N. O. (ref28/cit28) 1962; 27
Henne A. L. (ref35/cit35) 1951; 73
Vestergren R. (ref41/cit41) 2012; 1237
López-Fontán J. L. (ref25/cit25) 2005; 283
Schwarzenbach R. (ref38/cit38) 2003
Houde M. (ref10/cit10) 2006; 40
Moroi Y. (ref36/cit36) 2001; 74
Buck R. C. (ref3/cit3) 2011; 7
Li H. (ref18/cit18) 2007; 52
Ahrens L. (ref48/cit48) 2011; 83
Kaiser M. A. (ref50/cit50) 2005; 50
Seinfeld J. H. (ref51/cit51) 1998
Weinberg I. (ref47/cit47) 2011; 45
ref1/cit1
References_xml – ident: ref1/cit1
  doi: 10.1007/978-1-4419-6880-7_3
– volume: 42
  start-page: 3710
  year: 2008
  ident: ref57/cit57
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703165m
– volume-title: Fluorinated surfactants and repellents
  year: 2001
  ident: ref2/cit2
– volume: 40
  start-page: 864
  year: 2006
  ident: ref54/cit54
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051362f
– volume: 43
  start-page: 5152
  year: 2009
  ident: ref22/cit22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900815a
– volume: 9
  start-page: 839
  year: 2007
  ident: ref16/cit16
  publication-title: J. Environ. Monit.
  doi: 10.1039/b703510a
– volume: 73
  start-page: 2323
  year: 1951
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01149a122
– volume: 9
  start-page: 1178
  year: 1975
  ident: ref40/cit40
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60111a012
– ident: ref11/cit11
– volume: 7
  start-page: 513
  year: 2011
  ident: ref3/cit3
  publication-title: Integr. Environ. Assess. Manage.
  doi: 10.1002/ieam.258
– volume: 45
  start-page: 8665
  year: 2011
  ident: ref9/cit9
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201353v
– volume: 45
  start-page: 935
  year: 2011
  ident: ref47/cit47
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.11.011
– volume: 42
  start-page: 456
  year: 2008
  ident: ref30/cit30
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702192c
– volume: 44
  start-page: 317
  year: 2009
  ident: ref32/cit32
  publication-title: J. Environ. Sci. Health, Part A
  doi: 10.1080/10934520802659620
– volume: 4
  start-page: 995
  year: 2008
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es070895g
– volume: 27
  start-page: 4491
  year: 1962
  ident: ref28/cit28
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01059a090
– volume: 43
  start-page: 1134
  year: 2009
  ident: ref15/cit15
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802900n
– volume: 74
  start-page: 667
  year: 2001
  ident: ref36/cit36
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.74.667
– volume: 52
  start-page: 1580
  year: 2007
  ident: ref18/cit18
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je600556d
– volume: 42
  start-page: 8883
  year: 2008
  ident: ref19/cit19
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.09.008
– volume: 42
  start-page: 456
  year: 2008
  ident: ref31/cit31
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702192c
– volume-title: Atmospheric Chemistry and Physics
  year: 1998
  ident: ref51/cit51
– volume: 1237
  start-page: 64
  year: 2012
  ident: ref41/cit41
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2012.03.023
– volume-title: Multimedia Environmental Models
  year: 2001
  ident: ref39/cit39
  doi: 10.1201/9781420032543
– volume: 24
  start-page: 16
  year: 2012
  ident: ref12/cit12
  publication-title: Environ. Sci. Eur.
  doi: 10.1186/2190-4715-24-16
– ident: ref43/cit43
– volume: 8
  start-page: 339
  year: 2011
  ident: ref6/cit6
  publication-title: Environ. Chem.
  doi: 10.1071/EN10144
– volume: 283
  start-page: 862
  year: 2005
  ident: ref25/cit25
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-004-1228-7
– volume: 106
  start-page: 37
  year: 1992
  ident: ref29/cit29
  publication-title: Mikrochim. Acta
  doi: 10.1007/BF01242697
– volume: 8
  start-page: 389
  year: 2011
  ident: ref34/cit34
  publication-title: Environ. Chem.
  doi: 10.1071/EN10143
– volume: 42
  year: 2008
  ident: ref49/cit49
  publication-title: Atmos. Environ.
– volume-title: Environmental Organic Chemistry
  year: 2003
  ident: ref38/cit38
– volume: 13
  start-page: 20
  year: 2011
  ident: ref7/cit7
  publication-title: J. Environ. Monit.
  doi: 10.1039/C0EM00373E
– volume: 8
  start-page: 381
  year: 2011
  ident: ref24/cit24
  publication-title: Environ. Chem.
  doi: 10.1071/EN11007
– volume: 40
  start-page: 32
  year: 2006
  ident: ref4/cit4
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0512475
– volume: 49
  start-page: 411
  year: 2012
  ident: ref27/cit27
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.12.009
– volume: 44
  start-page: 1145
  year: 2009
  ident: ref37/cit37
  publication-title: J. Environ. Sci. Health, Part A
  doi: 10.1080/10934520903139811
– volume: 43
  start-page: 5150
  year: 2009
  ident: ref21/cit21
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900451s
– volume: 40
  start-page: 1862
  year: 2006
  ident: ref55/cit55
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0520767
– volume: 54
  start-page: 915
  year: 2010
  ident: ref17/cit17
  publication-title: Ann. Occup. Hyg.
– volume: 159
  start-page: 125
  year: 2011
  ident: ref44/cit44
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.09.023
– volume: 38
  start-page: 3316
  year: 2004
  ident: ref53/cit53
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049860w
– volume: 45
  start-page: 7962
  year: 2011
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104326w
– volume: 42
  start-page: 9283
  year: 2008
  ident: ref20/cit20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802047v
– volume: 47
  start-page: 616
  year: 2013
  ident: ref13/cit13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303733d
– volume: 42
  start-page: 5292
  year: 2008
  ident: ref33/cit33
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703207s
– volume: 949
  start-page: 60
  year: 2010
  ident: ref42/cit42
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/j.theochem.2010.03.003
– volume: 45
  start-page: 8098
  year: 2011
  ident: ref45/cit45
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1036173
– volume: 408
  start-page: 2936
  year: 2010
  ident: ref14/cit14
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.03.015
– volume: 42
  start-page: 3538
  year: 2008
  ident: ref23/cit23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703006d
– volume: 113
  start-page: 8152
  year: 2009
  ident: ref26/cit26
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9051352
– volume: 8
  start-page: 363
  year: 2011
  ident: ref46/cit46
  publication-title: Environ. Chem.
  doi: 10.1071/EN10133
– volume: 42
  start-page: 3969
  year: 2008
  ident: ref52/cit52
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es7032026
– volume: 40
  start-page: 4138
  year: 2006
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060233b
– volume: 50
  start-page: 1841
  year: 2005
  ident: ref50/cit50
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je050070r
– volume: 112
  start-page: 13542
  year: 2008
  ident: ref56/cit56
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp807322x
– volume: 83
  start-page: 9622
  year: 2011
  ident: ref48/cit48
  publication-title: Anal. Chem.
  doi: 10.1021/ac202414w
SSID ssj0002308
Score 2.4420226
Snippet The acid dissociation constants (pK as) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values...
The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values...
The acid dissociation constants (pKₐs) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values...
The acid dissociation constants (pK(a)s) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values...
SourceID swepub
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11032
SubjectTerms Acidity
Acids
Air
Applied sciences
Atmospheric pollution
Biological and physicochemical phenomena
carboxylic acids
Carboxylic Acids - chemistry
Chemical compounds
dissociation
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Estimating techniques
Exact sciences and technology
Experiments
Fluorocarbons - chemistry
Natural water pollution
partition coefficients
perfluorooctanoic acid
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Pollution, environment geology
sulfonic acids
Volatilization
Water - chemistry
Water Pollutants, Chemical - chemistry
Water treatment and pollution
Title Estimation of the Acid Dissociation Constant of Perfluoroalkyl Carboxylic Acids through an Experimental Investigation of their Water-to-Air Transport
URI http://dx.doi.org/10.1021/es402691z
https://www.ncbi.nlm.nih.gov/pubmed/23952814
https://www.proquest.com/docview/1439932606
https://www.proquest.com/docview/1443389627
https://www.proquest.com/docview/1500781250
https://www.proquest.com/docview/2000274848
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100881
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFD4a4wWEuAwGgVGZm8RLtsT3PFZtpwkJhASDvkWO40jVqmZK0gf2P_i_HDdp2kE33hL5s-LY59ifZZ_vALy3yLllbEWoTWRCzvApoYKFnCtlcMRtbnyA8-cv8uycf5qK6R68u-EEn8YnrsYtjkziqztwl0p0Xs9_Rt_66RY5tF6nKUiYnK7lg7ar-qXH1teWngeXpsZeKNr0Fbv45V_ioasF5_QRjNdhO-09k4vjZZMd26t_VRxv-5fH8LAjnGTYWsgT2HOLA7i_JUN4AIeTTbQbQjt3r5_C7wlOAG1sIykLglyRDO0sJ-PZZlDJqGWYjUd8dVUxX5ZVaeYXv-ZkZKoMWz-f2VW9mnRZgYhZkMlWagGypfbRf2pWkZ9IhKuwKcMhvvQy7M_g_HTyfXQWdnkcQsOVbEJVSKMcl06LzGXSCqGdRFIvjIh4YazKeJLbOMOdopYyk3GOJMJFjFuuKMsMO4T9RblwL4BYoeIiV5GwnHNqkN06K4rCaZYxx3kewAAHOu38sE5XR-w0TvuOD-Dj2gZS26mg-2Qc813Qtz30spX-2AUaXDOkHkmVv6fJkgCO1pa11Sy_C0TiHMkA3vTF6Nj-tMYsXLn0GM6QTUqqbsEIT_GQo0Y3Y2irUaS5DuB5a9mbRrJEUB3zAD60pt6XeNXx8ezHMEXzTeull7bWOn75v-59Bfeod8TVbccj2G-qpXuNrK3JBiuv_QP3lD5q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgLABVPAqlgTIYBFI3KUn8zDKaTjVAWyHRwuwix3GkqNGkSjIL-h_8L9dJJjOthscukY8TP-61j2X7XITea-Dc3NfMlcpTLiXwFAaMuJQKoaDHdarsBefTMz69oJ9nbNbL5Ni7MFCIGr5Ut5v4K3UB_6OpYaXDQ__6LroHJCSw1hyNvw2jLlBpuYxWEBI-W6oIrWe1M5Cub8xA21eqhsbIuigWm2jmLQ3Rdt45ftwFMGpL3B43uTxcNMmhvr4l5vh_VXqCHvX0E0edvTxFd8x8Bz1cEyXcQbuT1d03gPbOXz9DvyYwHHQ3HXGZYWCOONJ5io_yVRfjccc3G4v4aqqsWJRVqYrLnwUeqyqBShS5bvPVuI8RhNUcT9YCDeA17Y_hV3mFfwAtrtymdCN4GUTZn6OL48n5eOr2UR1cRQVvXJFxJQzlRrLEJFwzJg0His8U82imtEhomGo_gXWj5DzhfgqUwniEaioCkiiyi7bm5dzsIayZ8LNUeExTSgMFXNdolmVGkoQYSlMHjaDd494r67jdcA_8eGh4Bx0sTSHWvSa6Dc1RbIK-G6BXnRDIJtDohj0NyEDYU5skdND-0sDWimXXhECjPe6gt0MyuLndu1FzUy4shhLgljwQf8EwS_iAsXp_xgSdYpGk0kEvOgNfFZKELJA-ddCHzuKHFKtBfpR_j2Iw4bheWKFrKf2X_2reN-j-9Pz0JD75dPblFXoQWN9sz0Huo62mWpjXwOeaZNQ68m-4NkbL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ZbtQwFLWgSAiEWAqFQBkMAomXlCRe8xjNorKVSlCYt8hxHCnqaDLK8kD_g__lOslkptWwvCXyceLlXvtYts9F6LUGzs19zVypPOVSAk9hwIhLqRAKelynyl5w_nzCj8_ohzmb9wtFexcGClHBl6p2E9969SrNeoUB_52pYLXDQ__iOrpht-usRUfjr8PIC3RariMWhITP10pC21ntLKSrS7PQnZWqoEGyLpLFLqp5RUe0nXtm99CXodTtkZPzo6ZOjvTFFUHH_6_WfXS3p6E46uzmAbpmlvvo9pY44T46mG7uwAG0HwSqh-jXFIaF7sYjLjIMDBJHOk_xJN90NR53vLO2iFNTZoumKAu1OP-5wGNVJlCRRa7bfBXuYwVhtcTTrYADeEsDZPhVXuIfQI9Lty7cCF4GcfZH6Gw2_TY-dvvoDq6igteuyLgShnIjWWISrhmThgPVZ4p5NFNaJDRMtZ_A-lFynnA_BWphPEI1FQFJFDlAe8tiaZ4grJnws1R4TFNKAwWc12iWZUaShBhKUweNoO3j3juruN14D_x4aHgHvV2bQ6x7bXQbomOxC_pqgK46QZBdoNElmxqQgbCnN0nooMO1kW0Vy64NgU573EEvh2Rwd7uHo5amaCyGEuCYPBB_wTBL_IC5en_GBJ1ykaTSQY87I98UkoQskD510JvO6ocUq0U-yb9HMZhxXDVW8FpK_-m_mvcFunk6mcWf3p98fIZuBdY92-OQh2ivLhvzHGhdnYxaX_4NDXhJTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+Acid+Dissociation+Constant+of+Perfluoroalkyl+Carboxylic+Acids+through+an+Experimental+Investigation+of+their+Water-to-Air+Transport&rft.jtitle=Environmental+science+%26+technology&rft.au=Vierke%2C+Lena&rft.au=Berger%2C+Urs&rft.au=Cousins%2C+Ian+T&rft.date=2013-10-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=47&rft.issue=19&rft.spage=11032&rft_id=info:doi/10.1021%2Fes402691z&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3091895731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon