Highly Selective Two-Photon Fluorescent Probe for Ratiometric Sensing and Imaging Cysteine in Mitochondria

A novel ratiometric mitochondrial cysteine (Cys)-selective two-photon fluorescence probe has been developed on the basis of a merocyanine as the fluorophore and an acrylate moiety as the biothiol reaction site. The biocompatible and photostable acrylate-functionalized merocyanine probe shows not onl...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 88; no. 3; pp. 1908 - 1914
Main Authors Niu, Weifen, Guo, Lei, Li, Yinhui, Shuang, Shaomin, Dong, Chuan, Wong, Man Shing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel ratiometric mitochondrial cysteine (Cys)-selective two-photon fluorescence probe has been developed on the basis of a merocyanine as the fluorophore and an acrylate moiety as the biothiol reaction site. The biocompatible and photostable acrylate-functionalized merocyanine probe shows not only a mitochondria-targeting property but also highly selective detection and monitoring of Cys over other biothiols such as homocysteine (Hcy) and glutathione (GSH) and hydrogen sulfide (H2S) in live cells. In addition, this probe exhibits ratiometric fluorescence emission characteristics (F 518/F 452), which are linearly proportional to Cys concentrations in the range of 0.5–40 μM. More importantly, the probe and its released fluorophore, merocyanine, exhibit strong two-photon excited fluorescence (TPEF) with two-photon action cross-section (Φσmax) of 65.2 GM at 740 nm and 72.6 GM at 760 nm in aqueous medium, respectively, which is highly desirable for high contrast and brightness ratiometric two-photon fluorescence imaging of the living samples. The probe has been successfully applied to ratiometrically image and detect mitochondrial Cys in live cells and intact tissues down to a depth of 150 μm by two-photon fluorescence microscopy. Thus, this ratiometric two-photon fluorescent probe is practically useful for an investigation of Cys in living biological systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.5b04329