Structural Characterization of Sodium Alginate and Calcium Alginate

Alginate readily aggregates and forms a physical gel in the presence of cations. The association of the chains, and ultimately gel structure and mechanics, depends not only on ion type, but also on the sequence and composition of the alginate chain that ultimately determines its stiffness. Chain fle...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 17; no. 6; pp. 2160 - 2167
Main Authors Hecht, Hadas, Srebnik, Simcha
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alginate readily aggregates and forms a physical gel in the presence of cations. The association of the chains, and ultimately gel structure and mechanics, depends not only on ion type, but also on the sequence and composition of the alginate chain that ultimately determines its stiffness. Chain flexibility is generally believed to decrease with guluronic residue content, but it is also known that both polymannuronate and polyguluronate blocks are stiffer than heteropolymeric blocks. In this work, we use atomistic molecular dynamics simulation to primarily explore the association and aggregate structure of different alginate chains under various Ca2+ concentrations and for different alginate chain composition. We show that Ca2+ ions in general facilitate chain aggregation and gelation. However, aggregation is predominantly affected by alginate monomer composition, which is found to correlate with chain stiffness under certain solution conditions. In general, greater fractions of mannuronic monomers are found to increase chain flexibility of heteropolymer chains. Furthermore, differences in chain guluronic acid content are shown to lead to different interchain association mechanisms, such as lateral association, zipper mechanism, and entanglement, where the mannuronic residues are shown to operate as an elasticity moderator and therefore promote chain association.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1525-7797
1526-4602
1526-4602
DOI:10.1021/acs.biomac.6b00378