Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification
Nitrile groups in the polymer of intrinsic microporosity PIM-1 were reduced to primary amines using borane complexes. In adsorption experiments, the novel amine–PIM-1 showed higher CO2 uptake and higher CO2/N2 sorption selectivity than the parent polymer, with very evident dual-mode sorption behavio...
Saved in:
Published in | Macromolecules Vol. 47; no. 3; pp. 1021 - 1029 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
11.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nitrile groups in the polymer of intrinsic microporosity PIM-1 were reduced to primary amines using borane complexes. In adsorption experiments, the novel amine–PIM-1 showed higher CO2 uptake and higher CO2/N2 sorption selectivity than the parent polymer, with very evident dual-mode sorption behavior. In gas permeation with six light gases, the individual contributions of solubility and diffusion to the overall permeability was determined via time-lag analysis. The high CO2 affinity drastically restricts diffusion at low pressures and lowers CO2 permeability compared to the parent PIM-1. Furthermore, the size-sieving properties of the polymer are increased, which can be attributed to a higher stiffness of the system arising from hydrogen bonding of the amine groups. Thus, for the H2/CO2 gas pair, whereas PIM-1 favors CO2, amine–PIM-1 shows permselectivity toward H2, breaking the Robeson 2008 upper bound. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0024-9297 1520-5835 1520-5835 |
DOI: | 10.1021/ma401869p |