Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates

Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations....

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 12; no. 5; pp. 2408 - 2413
Main Authors He, Rui, Zhao, Liuyan, Petrone, Nicholas, Kim, Keun Soo, Roth, Michael, Hone, James, Kim, Philip, Pasupathy, Abhay, Pinczuk, Aron
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 09.05.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.
AbstractList Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.
Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.
Author He, Rui
Petrone, Nicholas
Hone, James
Pasupathy, Abhay
Pinczuk, Aron
Kim, Keun Soo
Zhao, Liuyan
Kim, Philip
Roth, Michael
AuthorAffiliation University of Northern Iowa
Sejong University
Columbia University
AuthorAffiliation_xml – name: University of Northern Iowa
– name: Sejong University
– name: Columbia University
Author_xml – sequence: 1
  givenname: Rui
  surname: He
  fullname: He, Rui
  email: rui.he@uni.edu
– sequence: 2
  givenname: Liuyan
  surname: Zhao
  fullname: Zhao, Liuyan
– sequence: 3
  givenname: Nicholas
  surname: Petrone
  fullname: Petrone, Nicholas
– sequence: 4
  givenname: Keun Soo
  surname: Kim
  fullname: Kim, Keun Soo
– sequence: 5
  givenname: Michael
  surname: Roth
  fullname: Roth, Michael
– sequence: 6
  givenname: James
  surname: Hone
  fullname: Hone, James
– sequence: 7
  givenname: Philip
  surname: Kim
  fullname: Kim, Philip
– sequence: 8
  givenname: Abhay
  surname: Pasupathy
  fullname: Pasupathy, Abhay
– sequence: 9
  givenname: Aron
  surname: Pinczuk
  fullname: Pinczuk, Aron
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25877368$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22494089$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFr2zAQx8VoadquD_sCxS-D7iHNSbJs6XGkXToIdJBt7M0o8rlRcSRPsgv59lXapIMSGAhOB7__SfzujBw575CQTxSuKTA6cS0H4Kp8-kBOqeAwLpRiR293mY_IWYyPAKC4gBMyYixXOUh1Sv7MdXjA7MdqE230oeutd9miD9q6LJ3pCtfW6Db7rTsfshvsfLQvjG-yWdDdCh1mqZ36rsOQLYZlTOEe40dy3Og24sWunpNf325_Tu_G8_vZ9-nX-VjnJe3HDdeNkBJVzYQpc81kUda15JKWDW-UUZLWbEkN6KIQQGW9FKJGw6UEQEDFz8nV69wu-L8Dxr5a22iwbbVDP8SKlgUDASn9fxQoYyAFsIRe7tBhuca66oJd67Cp9uIS8HkH6Jj8NEE7Y-M_Tsiy5IVM3OSVM8HHGLCpjO311uDWcZverLYrrN5WmBJf3iX2Qw-xu19oE6tHPwSXVB_gngFUz6Yp
CitedBy_id crossref_primary_10_1016_j_diamond_2014_11_012
crossref_primary_10_1088_0256_307X_38_6_066801
crossref_primary_10_1002_sia_5344
crossref_primary_10_1103_PhysRevB_88_045418
crossref_primary_10_1063_1_4940910
crossref_primary_10_1016_j_mee_2014_10_021
crossref_primary_10_1039_C3NR05303B
crossref_primary_10_1021_acs_nanolett_0c02785
crossref_primary_10_1039_C9RA09268D
crossref_primary_10_1063_1_5086333
crossref_primary_10_1016_j_carbon_2016_10_020
crossref_primary_10_1038_srep02571
crossref_primary_10_1088_1402_4896_adbabe
crossref_primary_10_1016_j_jallcom_2025_178697
crossref_primary_10_1021_acs_langmuir_1c01019
crossref_primary_10_1021_nn505178g
crossref_primary_10_1021_nn500209d
crossref_primary_10_1016_j_compositesb_2013_10_042
crossref_primary_10_1039_D3CP00861D
crossref_primary_10_1088_2053_1583_ac217a
crossref_primary_10_1016_j_carbon_2016_11_073
crossref_primary_10_1021_acs_langmuir_7b03260
crossref_primary_10_1016_j_carbon_2021_09_016
crossref_primary_10_1021_acsami_8b14698
crossref_primary_10_1016_j_matdes_2020_108555
crossref_primary_10_1038_srep44768
crossref_primary_10_1038_s41598_020_61481_6
crossref_primary_10_1002_jrs_5267
crossref_primary_10_1021_nn305486x
crossref_primary_10_1016_j_carbon_2013_03_043
crossref_primary_10_1038_srep02660
crossref_primary_10_1088_1361_6528_aae683
crossref_primary_10_1016_j_carbon_2022_08_004
crossref_primary_10_1039_D2NR07252A
crossref_primary_10_1002_adma_201706504
crossref_primary_10_1016_j_carbon_2016_10_048
crossref_primary_10_1016_j_cocom_2014_11_004
crossref_primary_10_1016_j_matchemphys_2020_123126
crossref_primary_10_1038_s41598_018_21390_1
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1021_acsnano_6b05101
crossref_primary_10_1016_j_jmst_2021_02_013
crossref_primary_10_1021_acs_nanolett_5b01246
crossref_primary_10_1016_j_carbon_2014_06_024
crossref_primary_10_1039_C2NR32852F
crossref_primary_10_1038_srep04830
crossref_primary_10_1002_smll_201400144
crossref_primary_10_3390_app13020916
crossref_primary_10_1016_j_apsusc_2020_146359
crossref_primary_10_1002_adfm_201300493
crossref_primary_10_1016_j_mtphys_2022_100851
crossref_primary_10_1088_2053_1591_ab24fa
crossref_primary_10_1016_j_mattod_2023_10_009
crossref_primary_10_1039_c3ta01162c
crossref_primary_10_1002_chem_201806312
crossref_primary_10_1088_2053_1583_ab60b4
crossref_primary_10_1021_nl4013387
crossref_primary_10_3390_ma16010202
crossref_primary_10_1088_1361_6463_ad61f7
crossref_primary_10_1103_PhysRevB_90_125419
crossref_primary_10_1002_adma_201903266
crossref_primary_10_1002_adma_201304156
crossref_primary_10_1007_s13391_013_0017_1
crossref_primary_10_1016_j_carbon_2013_11_020
crossref_primary_10_1007_s12274_014_0521_0
crossref_primary_10_1039_C5RA12848J
crossref_primary_10_1007_s10854_015_4238_y
crossref_primary_10_1016_j_chemphys_2016_05_004
crossref_primary_10_1021_acs_chemmater_7b02291
crossref_primary_10_1021_nn305306n
crossref_primary_10_1002_pssb_201300065
crossref_primary_10_1016_j_carbon_2014_09_045
crossref_primary_10_1109_LSENS_2023_3307095
crossref_primary_10_1039_C5NR00022J
crossref_primary_10_1021_acsaelm_4c02119
crossref_primary_10_1016_j_carbon_2015_06_002
crossref_primary_10_1002_admi_201300080
crossref_primary_10_1002_adom_201600201
crossref_primary_10_1016_j_ssc_2012_08_001
crossref_primary_10_1016_j_jpcs_2023_111371
crossref_primary_10_1039_C4RA08050E
crossref_primary_10_1039_C8NR07963C
crossref_primary_10_1016_j_carbon_2021_07_074
crossref_primary_10_1109_JSEN_2020_3034845
crossref_primary_10_1016_j_carbon_2020_02_074
crossref_primary_10_1038_ncomms5748
crossref_primary_10_1063_1_4834538
crossref_primary_10_3390_app4020282
crossref_primary_10_1007_s42823_022_00400_3
crossref_primary_10_1016_j_cpc_2024_109235
crossref_primary_10_1063_1_4823800
crossref_primary_10_1063_1_4818461
crossref_primary_10_1088_1361_6528_aa94b0
crossref_primary_10_1021_acsami_6b05227
crossref_primary_10_1007_s11433_014_5583_1
crossref_primary_10_1021_acs_jpcc_7b08170
crossref_primary_10_1016_j_carbon_2019_07_029
crossref_primary_10_1063_1_4817829
crossref_primary_10_1088_0957_4484_23_35_355703
crossref_primary_10_1007_s11426_014_5073_3
crossref_primary_10_1038_s41467_020_14637_x
crossref_primary_10_1021_nn304032f
crossref_primary_10_1021_nl504875x
crossref_primary_10_1016_j_mtla_2021_101131
crossref_primary_10_1007_s10854_016_4913_7
crossref_primary_10_1016_j_eml_2021_101273
crossref_primary_10_1088_1361_6463_ab7329
crossref_primary_10_1039_C8CP04418J
crossref_primary_10_1063_1_4964706
crossref_primary_10_1021_nl504318a
crossref_primary_10_1016_j_apsusc_2018_02_074
crossref_primary_10_3390_nano11051071
crossref_primary_10_1016_j_mtnano_2021_100111
crossref_primary_10_1039_C8CP02827C
crossref_primary_10_1016_j_jallcom_2023_171293
crossref_primary_10_1021_acs_nanolett_5b04821
crossref_primary_10_1002_sstr_202300551
crossref_primary_10_1088_1367_2630_15_3_035024
crossref_primary_10_1149_2162_8777_ac04f9
Cites_doi 10.1021/nn800459e
10.1016/j.ssc.2007.03.052
10.1038/nature07719
10.1016/j.ssc.2011.01.014
10.1103/PhysRevB.79.195425
10.1103/PhysRevB.80.205410
10.1002/jcc.540040211
10.1073/pnas.0811754106
10.1126/science.1171245
10.1021/nl101533x
10.1098/rsta.2010.0213
10.1021/nl1016706
10.1021/cm1028854
10.1021/nl102123c
10.1103/PhysRevLett.97.187401
10.1103/PhysRevLett.98.166802
10.1063/1.3437642
10.1016/S0039-6028(02)01916-7
10.1016/j.ssc.2007.04.022
10.1103/PhysRevLett.85.5214
10.1038/nnano.2008.67
10.1021/nl201566c
10.1103/PhysRevB.80.073408
10.1103/PhysRevB.79.205433
10.1006/jcph.1999.6201
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
H8G
JG9
L7M
DOI 10.1021/nl300397v
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Copper Technical Reference Library
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 2413
ExternalDocumentID 22494089
25877368
10_1021_nl300397v
d075230046
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
H8G
JG9
L7M
ID FETCH-LOGICAL-a471t-f3af588e9d25c74a2867dd83817f3f9c981d2b1c0a665018db55dec38800e0e93
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Thu Jul 10 18:50:51 EDT 2025
Fri Jul 11 16:02:17 EDT 2025
Mon Jul 21 05:16:43 EDT 2025
Mon Jul 21 09:14:41 EDT 2025
Tue Jul 01 00:42:46 EDT 2025
Thu Apr 24 23:07:45 EDT 2025
Thu Aug 27 13:42:06 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords CVD
strain
copper
Graphene
Monocrystals
Digital simulation
Molecular dynamics method
Theoretical study
Copper
Raman spectroscopy
Physisorption
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a471t-f3af588e9d25c74a2867dd83817f3f9c981d2b1c0a665018db55dec38800e0e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22494089
PQID 1012208502
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1762050665
proquest_miscellaneous_1012208502
pubmed_primary_22494089
pascalfrancis_primary_25877368
crossref_citationtrail_10_1021_nl300397v
crossref_primary_10_1021_nl300397v
acs_journals_10_1021_nl300397v
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-09
PublicationDateYYYYMMDD 2012-05-09
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-09
  day: 09
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kim K. S. (ref2/cit2) 2009; 457
Wood J. D. (ref4/cit4) 2011; 11
Agrawal P. M. (ref11/cit11) 2002; 515
Mohiuddin T. M. G. (ref15/cit15) 2009; 79
Yan J. (ref20/cit20) 2007; 98
Li X. (ref1/cit1) 2009; 324
Kalé L. (ref9/cit9) 1999; 151
Brooks B. B. R. (ref10/cit10) 1983; 4
Yu V. (ref19/cit19) 2011; 1101
Gao L. (ref26/cit26) 2010; 10
Mohr M. (ref17/cit17) 2009; 80
Das A. (ref21/cit21) 2008; 3
Ferrari A. C. (ref27/cit27) 2006; 97
Ni Z. H. (ref13/cit13) 2008; 2
Huang M. (ref18/cit18) 2010; 10
Ni Z. H. (ref16/cit16) 2008; 3
Yan J. (ref12/cit12) 2007; 143
Aitken Z. H. (ref25/cit25) 2010; 107
Proctor J. E. (ref24/cit24) 2009; 80
Huang M. (ref14/cit14) 2009; 106
Ferrari A. C. (ref8/cit8) 2007; 143
Dresselhaus M. S. (ref6/cit6) 2010; 368
Thomsen C. (ref7/cit7) 2000; 85
Ding F. (ref23/cit23) 2010; 10
Luo Z. (ref3/cit3) 2011; 23
Zhao L. (ref5/cit5) 2011; 151
Khomyakov P. A. (ref22/cit22) 2009; 79
References_xml – volume: 2
  start-page: 2301
  year: 2008
  ident: ref13/cit13
  publication-title: ACS Nano
  doi: 10.1021/nn800459e
– volume: 143
  start-page: 47
  year: 2007
  ident: ref8/cit8
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.03.052
– volume: 457
  start-page: 706
  year: 2009
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 151
  start-page: 509
  year: 2011
  ident: ref5/cit5
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2011.01.014
– volume: 79
  start-page: 195425
  year: 2009
  ident: ref22/cit22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.195425
– volume: 80
  start-page: 205410
  year: 2009
  ident: ref17/cit17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.205410
– volume: 4
  start-page: 187
  year: 1983
  ident: ref10/cit10
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540040211
– volume: 106
  start-page: 7304
  year: 2009
  ident: ref14/cit14
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811754106
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 10
  start-page: 3453
  year: 2010
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl101533x
– volume: 368
  start-page: 5355
  year: 2010
  ident: ref6/cit6
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2010.0213
– volume: 10
  start-page: 3512
  year: 2010
  ident: ref26/cit26
  publication-title: Nano Lett.
  doi: 10.1021/nl1016706
– volume: 23
  start-page: 1441
  year: 2011
  ident: ref3/cit3
  publication-title: Chem. Mater.
  doi: 10.1021/cm1028854
– volume: 10
  start-page: 4074
  year: 2010
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl102123c
– volume: 97
  start-page: 187401
  year: 2006
  ident: ref27/cit27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 98
  start-page: 166802
  year: 2007
  ident: ref20/cit20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.166802
– volume: 1101
  start-page: 1884
  year: 2011
  ident: ref19/cit19
  publication-title: arXiv
– volume: 107
  start-page: 123531
  year: 2010
  ident: ref25/cit25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3437642
– volume: 515
  start-page: 21
  year: 2002
  ident: ref11/cit11
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(02)01916-7
– volume: 143
  start-page: 39
  year: 2007
  ident: ref12/cit12
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.04.022
– volume: 3
  start-page: 483
  year: 2008
  ident: ref16/cit16
  publication-title: ACS Nano
– volume: 85
  start-page: 5214
  year: 2000
  ident: ref7/cit7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.5214
– volume: 3
  start-page: 210
  year: 2008
  ident: ref21/cit21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.67
– volume: 11
  start-page: 4547
  year: 2011
  ident: ref4/cit4
  publication-title: Nano Lett.
  doi: 10.1021/nl201566c
– volume: 80
  start-page: 073408
  year: 2009
  ident: ref24/cit24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.073408
– volume: 79
  start-page: 205433
  year: 2009
  ident: ref15/cit15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.205433
– volume: 151
  start-page: 283
  year: 1999
  ident: ref9/cit9
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6201
SSID ssj0009350
Score 2.4411383
Snippet Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2408
SubjectTerms CHEMICAL VAPOR DEPOSITION
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Compressive properties
COMPUTER SIMULATION
Copper
Cross-disciplinary physics: materials science; rheology
DEPOSITION
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
Graphene
Materials science
Methods of deposition of films and coatings; film growth and epitaxy
MICA
MICROSTRUCTURES
Molecular dynamics
Nanostructure
Nonuniform
Physics
PROPERTIES
Simulation
Specific materials
STRAIN
VAPOR DEPOSITION
Title Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates
URI http://dx.doi.org/10.1021/nl300397v
https://www.ncbi.nlm.nih.gov/pubmed/22494089
https://www.proquest.com/docview/1012208502
https://www.proquest.com/docview/1762050665
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9RADLZKuYAqChTo8lgN0AOXLMm8c6y2tFUFXErR3qJMZnKhSlabXQ78euzJZtuKtki5RHKUzNgef5HtzwAHPBPEApcnqbc-kU6kiROZTypteJ2ZWtSOGoW_fdenF_JspmZb8PGODD7PPjeXghpIze8H8JBrdF7CP9PzK2ZdEcewoufif1Bu5UAfdP1RCj1VdyP07MzLDneh7sdX3I0vY5w53oWjoVunLy_5NVkt3aT68y95431LeApP1jiTHfaG8Qy2QvMcHl9jH9yD2VeqAmexBrRrF_HsYOdxZgTDa6ASYD9LxOjsKAz1Xayt2QnxXOMxyfB22s7nYcHoCIpUt90LuDj-8mN6mqwHLSQlxqZlUouyVtaG3HNVGVlyq433lsj7UFl5lSOo5S6r0lJrIgD0TikfKuKRSUMacvEStpu2CfvAhAmWiyCDlEpSmywaiTPWaSu9qLUawRg1UawdpStiDpxnxWaLRvBpUFJRrWnKaeWXt4l-2IjOe26O24TGNzS9keTKGiO0HcH7QfUFuhblS8omtCv6tozTCNOU3yODwSRVlL8awavebq7egL-2MrX56_-t-Q08QhzGYx1l_ha2l4tVeIdYZ-nG0db_Asdp9ys
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIBHUA6AEM9SlsdiEAcuKYkfsXOsFsoC217aor1FcexcqJLVZrcHfj0zTrLbovKQcok0SfwYeybyzDcA73giiAKXRbEzLpJWxJEViYvKVPMq0ZWoLCUKHx2n0zP5da7mPSaHcmGwES2-qQ2H-Fu6QPKhPheUR6ovbsItdEI4afPB5GQL2BWhGisuYPwdyowcKEKXHyULVLZXLNC9RdHiYFRdFYs_u5nB3Bw-6OoWhYaGKJMf--uV3S9__sZw_L-ePIT7vdfJDjo1eQQ3fP0Y7l5iET6B-YxiwlmICG2bZdhJ2EmoIMHwGsAC7HuBHjv76IdoL9ZU7DNRr3HTZHg7aRYLv2S0IQXwbbsLZ4efTifTqC-7EBVoqVZRJYpKGeMzx1WpZcFNqp0zhPLDqcvKDF1cbpMyLtKUcIDOKuV8SVSZ2Mc-E09hp25q_wyY0N5w4aWXUklKmkWVsdrY1EgnqlSNYIwjlPfLps3DiThP8s0QjeD9MFd52UPLqefn14m-3YguOlLHdULjKxO-keTKaC1SM4I3gwbkuNDo9KSofbOmtiWcCprG_C8yaFpiRadZI9jr1Gf7BfzRlbHJnv-rz6_h9vT0aJbPvhx_ewF30EPjIcIyewk7q-Xav0IvaGXHQf1_Aeeu_4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAV4t2yUBaDOHBJSWwndo7VlqVAKUilaG9RHNuXVkm02eXAr2fGm2wfKg8pl0jjxI8Zz4xm5huANzwRhAKXR7HVNpJGxJERiY2qTHGfKC-8oULhL0fZwYn8NEtnvaNItTA4iQ6_1IUgPkl1a32PMJC8q88E1ZKqnzfhFoXriKP3JsfnILsidGRFIUaXKNdyQBK6OJS0UNVd0kJ327LDDfGrThZ_NjWDypneh6_ryYZMk9Pd5cLsVr-u4Dj-_2oewL3e-mR7K3Z5CDdc_Qg2L2ASPobZIeWGs5AZ2jXzcKOw49BJguEzAAywHyVa7mzfDVlfrPHsA6Ff4-XJ8HXStK2bM7qYAgBu9wROpu-_Tw6ivv1CVKLGWkRelD7V2uWWp5WSJdeZslYTpB8eYV7laOpyk1RxmWUEC2hNmlpXEbpM7GKXiy3YqJvaPQUmlNNcOOmkTCUVzyLrGKVNpqUVPktHMMZdKnrx6YoQGedJsd6iEbwdzquoevByWvnZdaSv16TtCrHjOqLxpUNfU_JUKyUyPYJXAxcUKHAURSlr1yxpbgmnxqYx_wsNqpg4pajWCLZXLHT-B3R4ZazzZ_9a80u4_W1_Whx-PPr8HO6gocZDomW-AxuL-dK9QGNoYcZBAn4DQrACHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Physisorption+Strain+in+Chemical+Vapor+Deposition+of+Graphene+on+Copper+Substrates&rft.jtitle=Nano+letters&rft.au=He%2C+Rui&rft.au=Zhao%2C+Liuyan&rft.au=Petrone%2C+Nicholas&rft.au=Kim%2C+Keun+Soo&rft.date=2012-05-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=5&rft.spage=2408&rft.epage=2413&rft_id=info:doi/10.1021%2Fnl300397v&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl300397v
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon