Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates
Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations....
Saved in:
Published in | Nano letters Vol. 12; no. 5; pp. 2408 - 2413 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
09.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains. |
---|---|
AbstractList | Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains. Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains. |
Author | He, Rui Petrone, Nicholas Hone, James Pasupathy, Abhay Pinczuk, Aron Kim, Keun Soo Zhao, Liuyan Kim, Philip Roth, Michael |
AuthorAffiliation | University of Northern Iowa Sejong University Columbia University |
AuthorAffiliation_xml | – name: University of Northern Iowa – name: Sejong University – name: Columbia University |
Author_xml | – sequence: 1 givenname: Rui surname: He fullname: He, Rui email: rui.he@uni.edu – sequence: 2 givenname: Liuyan surname: Zhao fullname: Zhao, Liuyan – sequence: 3 givenname: Nicholas surname: Petrone fullname: Petrone, Nicholas – sequence: 4 givenname: Keun Soo surname: Kim fullname: Kim, Keun Soo – sequence: 5 givenname: Michael surname: Roth fullname: Roth, Michael – sequence: 6 givenname: James surname: Hone fullname: Hone, James – sequence: 7 givenname: Philip surname: Kim fullname: Kim, Philip – sequence: 8 givenname: Abhay surname: Pasupathy fullname: Pasupathy, Abhay – sequence: 9 givenname: Aron surname: Pinczuk fullname: Pinczuk, Aron |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25877368$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22494089$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFr2zAQx8VoadquD_sCxS-D7iHNSbJs6XGkXToIdJBt7M0o8rlRcSRPsgv59lXapIMSGAhOB7__SfzujBw575CQTxSuKTA6cS0H4Kp8-kBOqeAwLpRiR293mY_IWYyPAKC4gBMyYixXOUh1Sv7MdXjA7MdqE230oeutd9miD9q6LJ3pCtfW6Db7rTsfshvsfLQvjG-yWdDdCh1mqZ36rsOQLYZlTOEe40dy3Og24sWunpNf325_Tu_G8_vZ9-nX-VjnJe3HDdeNkBJVzYQpc81kUda15JKWDW-UUZLWbEkN6KIQQGW9FKJGw6UEQEDFz8nV69wu-L8Dxr5a22iwbbVDP8SKlgUDASn9fxQoYyAFsIRe7tBhuca66oJd67Cp9uIS8HkH6Jj8NEE7Y-M_Tsiy5IVM3OSVM8HHGLCpjO311uDWcZverLYrrN5WmBJf3iX2Qw-xu19oE6tHPwSXVB_gngFUz6Yp |
CitedBy_id | crossref_primary_10_1016_j_diamond_2014_11_012 crossref_primary_10_1088_0256_307X_38_6_066801 crossref_primary_10_1002_sia_5344 crossref_primary_10_1103_PhysRevB_88_045418 crossref_primary_10_1063_1_4940910 crossref_primary_10_1016_j_mee_2014_10_021 crossref_primary_10_1039_C3NR05303B crossref_primary_10_1021_acs_nanolett_0c02785 crossref_primary_10_1039_C9RA09268D crossref_primary_10_1063_1_5086333 crossref_primary_10_1016_j_carbon_2016_10_020 crossref_primary_10_1038_srep02571 crossref_primary_10_1088_1402_4896_adbabe crossref_primary_10_1016_j_jallcom_2025_178697 crossref_primary_10_1021_acs_langmuir_1c01019 crossref_primary_10_1021_nn505178g crossref_primary_10_1021_nn500209d crossref_primary_10_1016_j_compositesb_2013_10_042 crossref_primary_10_1039_D3CP00861D crossref_primary_10_1088_2053_1583_ac217a crossref_primary_10_1016_j_carbon_2016_11_073 crossref_primary_10_1021_acs_langmuir_7b03260 crossref_primary_10_1016_j_carbon_2021_09_016 crossref_primary_10_1021_acsami_8b14698 crossref_primary_10_1016_j_matdes_2020_108555 crossref_primary_10_1038_srep44768 crossref_primary_10_1038_s41598_020_61481_6 crossref_primary_10_1002_jrs_5267 crossref_primary_10_1021_nn305486x crossref_primary_10_1016_j_carbon_2013_03_043 crossref_primary_10_1038_srep02660 crossref_primary_10_1088_1361_6528_aae683 crossref_primary_10_1016_j_carbon_2022_08_004 crossref_primary_10_1039_D2NR07252A crossref_primary_10_1002_adma_201706504 crossref_primary_10_1016_j_carbon_2016_10_048 crossref_primary_10_1016_j_cocom_2014_11_004 crossref_primary_10_1016_j_matchemphys_2020_123126 crossref_primary_10_1038_s41598_018_21390_1 crossref_primary_10_1002_adfm_202408870 crossref_primary_10_1021_acsnano_6b05101 crossref_primary_10_1016_j_jmst_2021_02_013 crossref_primary_10_1021_acs_nanolett_5b01246 crossref_primary_10_1016_j_carbon_2014_06_024 crossref_primary_10_1039_C2NR32852F crossref_primary_10_1038_srep04830 crossref_primary_10_1002_smll_201400144 crossref_primary_10_3390_app13020916 crossref_primary_10_1016_j_apsusc_2020_146359 crossref_primary_10_1002_adfm_201300493 crossref_primary_10_1016_j_mtphys_2022_100851 crossref_primary_10_1088_2053_1591_ab24fa crossref_primary_10_1016_j_mattod_2023_10_009 crossref_primary_10_1039_c3ta01162c crossref_primary_10_1002_chem_201806312 crossref_primary_10_1088_2053_1583_ab60b4 crossref_primary_10_1021_nl4013387 crossref_primary_10_3390_ma16010202 crossref_primary_10_1088_1361_6463_ad61f7 crossref_primary_10_1103_PhysRevB_90_125419 crossref_primary_10_1002_adma_201903266 crossref_primary_10_1002_adma_201304156 crossref_primary_10_1007_s13391_013_0017_1 crossref_primary_10_1016_j_carbon_2013_11_020 crossref_primary_10_1007_s12274_014_0521_0 crossref_primary_10_1039_C5RA12848J crossref_primary_10_1007_s10854_015_4238_y crossref_primary_10_1016_j_chemphys_2016_05_004 crossref_primary_10_1021_acs_chemmater_7b02291 crossref_primary_10_1021_nn305306n crossref_primary_10_1002_pssb_201300065 crossref_primary_10_1016_j_carbon_2014_09_045 crossref_primary_10_1109_LSENS_2023_3307095 crossref_primary_10_1039_C5NR00022J crossref_primary_10_1021_acsaelm_4c02119 crossref_primary_10_1016_j_carbon_2015_06_002 crossref_primary_10_1002_admi_201300080 crossref_primary_10_1002_adom_201600201 crossref_primary_10_1016_j_ssc_2012_08_001 crossref_primary_10_1016_j_jpcs_2023_111371 crossref_primary_10_1039_C4RA08050E crossref_primary_10_1039_C8NR07963C crossref_primary_10_1016_j_carbon_2021_07_074 crossref_primary_10_1109_JSEN_2020_3034845 crossref_primary_10_1016_j_carbon_2020_02_074 crossref_primary_10_1038_ncomms5748 crossref_primary_10_1063_1_4834538 crossref_primary_10_3390_app4020282 crossref_primary_10_1007_s42823_022_00400_3 crossref_primary_10_1016_j_cpc_2024_109235 crossref_primary_10_1063_1_4823800 crossref_primary_10_1063_1_4818461 crossref_primary_10_1088_1361_6528_aa94b0 crossref_primary_10_1021_acsami_6b05227 crossref_primary_10_1007_s11433_014_5583_1 crossref_primary_10_1021_acs_jpcc_7b08170 crossref_primary_10_1016_j_carbon_2019_07_029 crossref_primary_10_1063_1_4817829 crossref_primary_10_1088_0957_4484_23_35_355703 crossref_primary_10_1007_s11426_014_5073_3 crossref_primary_10_1038_s41467_020_14637_x crossref_primary_10_1021_nn304032f crossref_primary_10_1021_nl504875x crossref_primary_10_1016_j_mtla_2021_101131 crossref_primary_10_1007_s10854_016_4913_7 crossref_primary_10_1016_j_eml_2021_101273 crossref_primary_10_1088_1361_6463_ab7329 crossref_primary_10_1039_C8CP04418J crossref_primary_10_1063_1_4964706 crossref_primary_10_1021_nl504318a crossref_primary_10_1016_j_apsusc_2018_02_074 crossref_primary_10_3390_nano11051071 crossref_primary_10_1016_j_mtnano_2021_100111 crossref_primary_10_1039_C8CP02827C crossref_primary_10_1016_j_jallcom_2023_171293 crossref_primary_10_1021_acs_nanolett_5b04821 crossref_primary_10_1002_sstr_202300551 crossref_primary_10_1088_1367_2630_15_3_035024 crossref_primary_10_1149_2162_8777_ac04f9 |
Cites_doi | 10.1021/nn800459e 10.1016/j.ssc.2007.03.052 10.1038/nature07719 10.1016/j.ssc.2011.01.014 10.1103/PhysRevB.79.195425 10.1103/PhysRevB.80.205410 10.1002/jcc.540040211 10.1073/pnas.0811754106 10.1126/science.1171245 10.1021/nl101533x 10.1098/rsta.2010.0213 10.1021/nl1016706 10.1021/cm1028854 10.1021/nl102123c 10.1103/PhysRevLett.97.187401 10.1103/PhysRevLett.98.166802 10.1063/1.3437642 10.1016/S0039-6028(02)01916-7 10.1016/j.ssc.2007.04.022 10.1103/PhysRevLett.85.5214 10.1038/nnano.2008.67 10.1021/nl201566c 10.1103/PhysRevB.80.073408 10.1103/PhysRevB.79.205433 10.1006/jcph.1999.6201 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD H8G JG9 L7M |
DOI | 10.1021/nl300397v |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Copper Technical Reference Library Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 2413 |
ExternalDocumentID | 22494089 25877368 10_1021_nl300397v d075230046 |
Genre | Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW NPM 7X8 7SR 7U5 8BQ 8FD H8G JG9 L7M |
ID | FETCH-LOGICAL-a471t-f3af588e9d25c74a2867dd83817f3f9c981d2b1c0a665018db55dec38800e0e93 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jul 10 18:50:51 EDT 2025 Fri Jul 11 16:02:17 EDT 2025 Mon Jul 21 05:16:43 EDT 2025 Mon Jul 21 09:14:41 EDT 2025 Tue Jul 01 00:42:46 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | CVD strain copper Graphene Monocrystals Digital simulation Molecular dynamics method Theoretical study Copper Raman spectroscopy Physisorption |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a471t-f3af588e9d25c74a2867dd83817f3f9c981d2b1c0a665018db55dec38800e0e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22494089 |
PQID | 1012208502 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1762050665 proquest_miscellaneous_1012208502 pubmed_primary_22494089 pascalfrancis_primary_25877368 crossref_citationtrail_10_1021_nl300397v crossref_primary_10_1021_nl300397v acs_journals_10_1021_nl300397v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-09 |
PublicationDateYYYYMMDD | 2012-05-09 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kim K. S. (ref2/cit2) 2009; 457 Wood J. D. (ref4/cit4) 2011; 11 Agrawal P. M. (ref11/cit11) 2002; 515 Mohiuddin T. M. G. (ref15/cit15) 2009; 79 Yan J. (ref20/cit20) 2007; 98 Li X. (ref1/cit1) 2009; 324 Kalé L. (ref9/cit9) 1999; 151 Brooks B. B. R. (ref10/cit10) 1983; 4 Yu V. (ref19/cit19) 2011; 1101 Gao L. (ref26/cit26) 2010; 10 Mohr M. (ref17/cit17) 2009; 80 Das A. (ref21/cit21) 2008; 3 Ferrari A. C. (ref27/cit27) 2006; 97 Ni Z. H. (ref13/cit13) 2008; 2 Huang M. (ref18/cit18) 2010; 10 Ni Z. H. (ref16/cit16) 2008; 3 Yan J. (ref12/cit12) 2007; 143 Aitken Z. H. (ref25/cit25) 2010; 107 Proctor J. E. (ref24/cit24) 2009; 80 Huang M. (ref14/cit14) 2009; 106 Ferrari A. C. (ref8/cit8) 2007; 143 Dresselhaus M. S. (ref6/cit6) 2010; 368 Thomsen C. (ref7/cit7) 2000; 85 Ding F. (ref23/cit23) 2010; 10 Luo Z. (ref3/cit3) 2011; 23 Zhao L. (ref5/cit5) 2011; 151 Khomyakov P. A. (ref22/cit22) 2009; 79 |
References_xml | – volume: 2 start-page: 2301 year: 2008 ident: ref13/cit13 publication-title: ACS Nano doi: 10.1021/nn800459e – volume: 143 start-page: 47 year: 2007 ident: ref8/cit8 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.03.052 – volume: 457 start-page: 706 year: 2009 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature07719 – volume: 151 start-page: 509 year: 2011 ident: ref5/cit5 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2011.01.014 – volume: 79 start-page: 195425 year: 2009 ident: ref22/cit22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.195425 – volume: 80 start-page: 205410 year: 2009 ident: ref17/cit17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.205410 – volume: 4 start-page: 187 year: 1983 ident: ref10/cit10 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540040211 – volume: 106 start-page: 7304 year: 2009 ident: ref14/cit14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0811754106 – volume: 324 start-page: 1312 year: 2009 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1171245 – volume: 10 start-page: 3453 year: 2010 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl101533x – volume: 368 start-page: 5355 year: 2010 ident: ref6/cit6 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2010.0213 – volume: 10 start-page: 3512 year: 2010 ident: ref26/cit26 publication-title: Nano Lett. doi: 10.1021/nl1016706 – volume: 23 start-page: 1441 year: 2011 ident: ref3/cit3 publication-title: Chem. Mater. doi: 10.1021/cm1028854 – volume: 10 start-page: 4074 year: 2010 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl102123c – volume: 97 start-page: 187401 year: 2006 ident: ref27/cit27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 98 start-page: 166802 year: 2007 ident: ref20/cit20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.166802 – volume: 1101 start-page: 1884 year: 2011 ident: ref19/cit19 publication-title: arXiv – volume: 107 start-page: 123531 year: 2010 ident: ref25/cit25 publication-title: J. Appl. Phys. doi: 10.1063/1.3437642 – volume: 515 start-page: 21 year: 2002 ident: ref11/cit11 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(02)01916-7 – volume: 143 start-page: 39 year: 2007 ident: ref12/cit12 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.04.022 – volume: 3 start-page: 483 year: 2008 ident: ref16/cit16 publication-title: ACS Nano – volume: 85 start-page: 5214 year: 2000 ident: ref7/cit7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.5214 – volume: 3 start-page: 210 year: 2008 ident: ref21/cit21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.67 – volume: 11 start-page: 4547 year: 2011 ident: ref4/cit4 publication-title: Nano Lett. doi: 10.1021/nl201566c – volume: 80 start-page: 073408 year: 2009 ident: ref24/cit24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.073408 – volume: 79 start-page: 205433 year: 2009 ident: ref15/cit15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.205433 – volume: 151 start-page: 283 year: 1999 ident: ref9/cit9 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6201 |
SSID | ssj0009350 |
Score | 2.4411383 |
Snippet | Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2408 |
SubjectTerms | CHEMICAL VAPOR DEPOSITION Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Compressive properties COMPUTER SIMULATION Copper Cross-disciplinary physics: materials science; rheology DEPOSITION Exact sciences and technology Fullerenes and related materials; diamonds, graphite Graphene Materials science Methods of deposition of films and coatings; film growth and epitaxy MICA MICROSTRUCTURES Molecular dynamics Nanostructure Nonuniform Physics PROPERTIES Simulation Specific materials STRAIN VAPOR DEPOSITION |
Title | Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates |
URI | http://dx.doi.org/10.1021/nl300397v https://www.ncbi.nlm.nih.gov/pubmed/22494089 https://www.proquest.com/docview/1012208502 https://www.proquest.com/docview/1762050665 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9RADLZKuYAqChTo8lgN0AOXLMm8c6y2tFUFXErR3qJMZnKhSlabXQ78euzJZtuKtki5RHKUzNgef5HtzwAHPBPEApcnqbc-kU6kiROZTypteJ2ZWtSOGoW_fdenF_JspmZb8PGODD7PPjeXghpIze8H8JBrdF7CP9PzK2ZdEcewoufif1Bu5UAfdP1RCj1VdyP07MzLDneh7sdX3I0vY5w53oWjoVunLy_5NVkt3aT68y95431LeApP1jiTHfaG8Qy2QvMcHl9jH9yD2VeqAmexBrRrF_HsYOdxZgTDa6ASYD9LxOjsKAz1Xayt2QnxXOMxyfB22s7nYcHoCIpUt90LuDj-8mN6mqwHLSQlxqZlUouyVtaG3HNVGVlyq433lsj7UFl5lSOo5S6r0lJrIgD0TikfKuKRSUMacvEStpu2CfvAhAmWiyCDlEpSmywaiTPWaSu9qLUawRg1UawdpStiDpxnxWaLRvBpUFJRrWnKaeWXt4l-2IjOe26O24TGNzS9keTKGiO0HcH7QfUFuhblS8omtCv6tozTCNOU3yODwSRVlL8awavebq7egL-2MrX56_-t-Q08QhzGYx1l_ha2l4tVeIdYZ-nG0db_Asdp9ys |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9QwEIBHUA6AEM9SlsdiEAcuKYkfsXOsFsoC217aor1FcexcqJLVZrcHfj0zTrLbovKQcok0SfwYeybyzDcA73giiAKXRbEzLpJWxJEViYvKVPMq0ZWoLCUKHx2n0zP5da7mPSaHcmGwES2-qQ2H-Fu6QPKhPheUR6ovbsItdEI4afPB5GQL2BWhGisuYPwdyowcKEKXHyULVLZXLNC9RdHiYFRdFYs_u5nB3Bw-6OoWhYaGKJMf--uV3S9__sZw_L-ePIT7vdfJDjo1eQQ3fP0Y7l5iET6B-YxiwlmICG2bZdhJ2EmoIMHwGsAC7HuBHjv76IdoL9ZU7DNRr3HTZHg7aRYLv2S0IQXwbbsLZ4efTifTqC-7EBVoqVZRJYpKGeMzx1WpZcFNqp0zhPLDqcvKDF1cbpMyLtKUcIDOKuV8SVSZ2Mc-E09hp25q_wyY0N5w4aWXUklKmkWVsdrY1EgnqlSNYIwjlPfLps3DiThP8s0QjeD9MFd52UPLqefn14m-3YguOlLHdULjKxO-keTKaC1SM4I3gwbkuNDo9KSofbOmtiWcCprG_C8yaFpiRadZI9jr1Gf7BfzRlbHJnv-rz6_h9vT0aJbPvhx_ewF30EPjIcIyewk7q-Xav0IvaGXHQf1_Aeeu_4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAV4t2yUBaDOHBJSWwndo7VlqVAKUilaG9RHNuXVkm02eXAr2fGm2wfKg8pl0jjxI8Zz4xm5huANzwRhAKXR7HVNpJGxJERiY2qTHGfKC-8oULhL0fZwYn8NEtnvaNItTA4iQ6_1IUgPkl1a32PMJC8q88E1ZKqnzfhFoXriKP3JsfnILsidGRFIUaXKNdyQBK6OJS0UNVd0kJ327LDDfGrThZ_NjWDypneh6_ryYZMk9Pd5cLsVr-u4Dj-_2oewL3e-mR7K3Z5CDdc_Qg2L2ASPobZIeWGs5AZ2jXzcKOw49BJguEzAAywHyVa7mzfDVlfrPHsA6Ff4-XJ8HXStK2bM7qYAgBu9wROpu-_Tw6ivv1CVKLGWkRelD7V2uWWp5WSJdeZslYTpB8eYV7laOpyk1RxmWUEC2hNmlpXEbpM7GKXiy3YqJvaPQUmlNNcOOmkTCUVzyLrGKVNpqUVPktHMMZdKnrx6YoQGedJsd6iEbwdzquoevByWvnZdaSv16TtCrHjOqLxpUNfU_JUKyUyPYJXAxcUKHAURSlr1yxpbgmnxqYx_wsNqpg4pajWCLZXLHT-B3R4ZazzZ_9a80u4_W1_Whx-PPr8HO6gocZDomW-AxuL-dK9QGNoYcZBAn4DQrACHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Physisorption+Strain+in+Chemical+Vapor+Deposition+of+Graphene+on+Copper+Substrates&rft.jtitle=Nano+letters&rft.au=He%2C+Rui&rft.au=Zhao%2C+Liuyan&rft.au=Petrone%2C+Nicholas&rft.au=Kim%2C+Keun+Soo&rft.date=2012-05-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=12&rft.issue=5&rft.spage=2408&rft.epage=2413&rft_id=info:doi/10.1021%2Fnl300397v&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_nl300397v |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |