A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel
A fluorescence biosensor is described that is based on a photopolymerized poly(ethylene glycol) (PEG) hydrogel incorporating fluorescein isothiocyanate dextran (FITC-dextran) and tetramethylrhodamine isothiocyanate concanavalin A (TRITC-Con A) chemically conjugated into the hydrogel network using an...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 71; no. 15; pp. 3126 - 3132 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.08.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A fluorescence biosensor is described that is based on a photopolymerized poly(ethylene glycol) (PEG) hydrogel incorporating fluorescein isothiocyanate dextran (FITC-dextran) and tetramethylrhodamine isothiocyanate concanavalin A (TRITC-Con A) chemically conjugated into the hydrogel network using an α-acryloyl, ω-N-hydroxysuccinimidyl ester of PEG-propionic acid. In the absence of glucose, TRITC-Con A binds with FITC-dextran, and the FITC fluorescence is quenched through fluorescence resonance energy transfer. Competitive glucose binding to TRITC-Con A liberates FITC-dextran, resulting in increased FITC fluorescence proportional to the glucose concentration. In vitro experiments of hydrogel spheres in a solution of 0.1 M phosphate-buffered saline (pH 7.2) and glucose were conducted for multiple TRITC-Con A/FITC-dextran ratios. Hydrogels were characterized on the basis of the percent change in fluorescence intensity when FITC-dextran was liberated by increasing glucose concentrations. The optimum fluorescent change between 0 and 800 mg/dL was obtained with a TRITC-Con A/FITC-dextran mass ratio of 500:5 μg/mL PEG. Fluorescent response was linear up to 600 mg/dL. At higher concentrations, the response saturated due to the displacement of the majority of the FITC-dextran and to concentration quenching by free FITC-dextran. Dynamic fluorescent change upon glucose addition was ∼10 min for a glucose concentration step change from 0 to 200 mg/dL. |
---|---|
Bibliography: | ark:/67375/TPS-MLJ6VD3G-T istex:CE3DB473111D79EAAD30333DB5748FF7F061757A ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac990060r |