Forging Isopeptide Bonds Using Thiol–Ene Chemistry: Site-Specific Coupling of Ubiquitin Molecules for Studying the Activity of Isopeptidases

Chemical methods for modifying proteins can enable studies aimed at uncovering biochemical function. Herein, we describe the use of thiol–ene coupling (TEC) chemistry to report on the function of branched (also referred to as forked) ubiquitin trimers. We show how site-specific isopeptide (Nε-Gly-l-...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 134; no. 16; pp. 6916 - 6919
Main Authors Valkevich, Ellen M, Guenette, Robert G, Sanchez, Nicholas A, Chen, Yi-chen, Ge, Ying, Strieter, Eric R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemical methods for modifying proteins can enable studies aimed at uncovering biochemical function. Herein, we describe the use of thiol–ene coupling (TEC) chemistry to report on the function of branched (also referred to as forked) ubiquitin trimers. We show how site-specific isopeptide (Nε-Gly-l-homothiaLys) bonds are forged between two molecules of Ub, demonstrating the power of TEC in protein conjugation. Moreover, we demonstrate that the Nε-Gly-l-homothiaLys isopeptide bond is processed to a similar extent by deubiquitinases (DUBs) as that of a native Nε-Gly-l-Lys isopeptide bond, thereby establishing the utility of TEC in the generation of Ub-Ub linkages. TEC is then applied to the synthesis of branched Ub trimers. Interrogation of these branched derivatives with DUBs reveals that the relative orientation of the two Ub units has a dramatic impact on how they are hydrolyzed. In particular, cleavage of K48C-linkages is suppressed when the central Ub unit is also conjugated through K6C, whereas cleavage proceeds normally when the central unit is conjugated through either K11C or K63C. The results of this work presage a role for branched polymeric Ub chains in regulating linkage-selective interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja300500a