Electronic Structure Determination of Pyridine N‑Heterocyclic Carbene Iron Dinitrogen Complexes and Neutral Ligand Derivatives

The electronic structures of pyridine N-heterocyclic dicarbene (iPrCNC) iron complexes have been studied by a combination of spectroscopic and computational methods. The goal of these studies was to determine if this chelate engages in radical chemistry in reduced base metal compounds. The iron dini...

Full description

Saved in:
Bibliographic Details
Published inOrganometallics Vol. 33; no. 19; pp. 5423 - 5433
Main Authors Darmon, Jonathan M, Yu, Renyuan Pony, Semproni, Scott P, Turner, Zoë R, Stieber, S. Chantal E, DeBeer, Serena, Chirik, Paul J
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 13.10.2014
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The electronic structures of pyridine N-heterocyclic dicarbene (iPrCNC) iron complexes have been studied by a combination of spectroscopic and computational methods. The goal of these studies was to determine if this chelate engages in radical chemistry in reduced base metal compounds. The iron dinitrogen example (iPrCNC)­Fe­(N2)2 and the related pyridine derivative (iPrCNC)­Fe­(DMAP)­(N2) were studied by NMR, Mössbauer, and X-ray absorption spectroscopy and are best described as redox non-innocent compounds with the iPrCNC chelate functioning as a classical π acceptor and the iron being viewed as a hybrid between low-spin Fe(0) and Fe­(II) oxidation states. This electronic description has been supported by spectroscopic data and DFT calculations. Addition of N,N-diallyl-tert-butylamine to (iPrCNC)­Fe­(N2)2 yielded the corresponding iron diene complex. Elucidation of the electronic structure again revealed the CNC chelate acting as a π acceptor with no evidence for ligand-centered radicals. This ground state is in contrast with the case for the analogous bis­(imino)­pyridine iron complexes and may account for the lack of catalytic [2π + 2π] cycloaddition reactivity.
Bibliography:NIH RePORTER
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0276-7333
1520-6041
DOI:10.1021/om500727t