Statistical Analysis of Relative Labeled Mass Spectrometry Data from Complex Samples Using ANOVA

Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a c...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 7; no. 1; pp. 225 - 233
Main Authors Oberg, Ann L, Mahoney, Douglas W, Eckel-Passow, Jeanette E, Malone, Christopher J, Wolfinger, Russell D, Hill, Elizabeth G, Cooper, Leslie T, Onuma, Oyere K, Spiro, Craig, Therneau, Terry M, Bergen, III, H. Robert
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.01.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR EMAIL ADDRESS Ann Oberg, oberg.ann@mayo.edu; Douglas Mahoney, mahoney@mayo.edu; Jeanette Eckel-Passow, eckelpassow.jeanette@mayo.edu; Christopher Malone, cmalone@winona.edu; Russell Wolfinger, russ.wolfinger@jmp.com; Elizabeth Hill, hille@musc.edu; Leslie Cooper, cooper.leslie@mayo.edu; Oyere Onuma, oyere.onuma@yahoo.com; Craig Spiro, spiro.craig@mayo.edu; Terry Therneau, therneau@mayo.edu; H. Robert Bergen, bergen.bob@mayo.edu
ISSN:1535-3893
1535-3907
DOI:10.1021/pr700734f