Statistical Analysis of Relative Labeled Mass Spectrometry Data from Complex Samples Using ANOVA
Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a c...
Saved in:
Published in | Journal of proteome research Vol. 7; no. 1; pp. 225 - 233 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.01.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR EMAIL ADDRESS Ann Oberg, oberg.ann@mayo.edu; Douglas Mahoney, mahoney@mayo.edu; Jeanette Eckel-Passow, eckelpassow.jeanette@mayo.edu; Christopher Malone, cmalone@winona.edu; Russell Wolfinger, russ.wolfinger@jmp.com; Elizabeth Hill, hille@musc.edu; Leslie Cooper, cooper.leslie@mayo.edu; Oyere Onuma, oyere.onuma@yahoo.com; Craig Spiro, spiro.craig@mayo.edu; Terry Therneau, therneau@mayo.edu; H. Robert Bergen, bergen.bob@mayo.edu |
ISSN: | 1535-3893 1535-3907 |
DOI: | 10.1021/pr700734f |