In Vitro Toxicity of Silver Nanoparticles at Noncytotoxic Doses to HepG2 Human Hepatoma Cells
Although it has been reported that silver nanoparticles (Ag-NPs) have strong acute toxic effects to various cultured cells, the toxic effects at noncytotoxic doses are still unknown. We, therefore, evaluated in vitro toxicity of Ag-NPs at noncytotoxic doses in human hepatoma cell line, HepG2, based...
Saved in:
Published in | Environmental science & technology Vol. 43; no. 15; pp. 6046 - 6051 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.08.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although it has been reported that silver nanoparticles (Ag-NPs) have strong acute toxic effects to various cultured cells, the toxic effects at noncytotoxic doses are still unknown. We, therefore, evaluated in vitro toxicity of Ag-NPs at noncytotoxic doses in human hepatoma cell line, HepG2, based on cell viability assay, micronucleus test, and DNA microarray analysis. We also used polystyrene nanoparticles (PS-NPs) and silver carbonate (Ag2CO3) as test materials to compare the toxic effects with respect to different raw chemical composition and form of silver. The cell viability assay demonstrated that Ag-NPs accelerated cell proliferation at low doses (<0.5 mg/L), which was supported by the DNA microarray analysis showing significant induction of genes associated with cell cycle progression. However, only Ag-NPs exposure exhibited a significant cytotoxicity at higher doses (>1.0 mg/L) and induced abnormal cellular morphology, displaying cellular shrinkage and acquisition of an irregular shape. In addition, only Ag-NPs exposure increased the frequency of micronucleus formation up to 47.9 ± 3.2% of binucleated cells, suggesting that Ag-NPs appear to cause much stronger damages to chromosome than PS-NPs and ionic Ag+. Cysteine, a strong ionic Ag+ ligand, only partially abolished the formation of micronuclei mediated by Ag-NPs and changed the gene expression, indicating that ionic Ag+ derived from Ag-NPs could not fully explain these biological actions. Based on these discussions, it is concluded that both “nanosized particle of Ag” as well as “ionic Ag+” contribute to the toxic effects of Ag-NPs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es900754q |