Convection-Induced Fingering Fronts in the Chlorite–Trithionate Reaction
Based upon a former study, the chlorite–trithionate reaction can avoid the side reactions arising from the well-known alkaline decomposition of polythionates, making it a suitable candidate for investigating spatial front instabilities in a reaction–diffusion–convection system. In this work, the chl...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 120; no. 16; pp. 2514 - 2520 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Based upon a former study, the chlorite–trithionate reaction can avoid the side reactions arising from the well-known alkaline decomposition of polythionates, making it a suitable candidate for investigating spatial front instabilities in a reaction–diffusion–convection system. In this work, the chlorite–trithionate reaction was investigated in a Hele-Shaw cell, in which fingering patterns were observed over a wide range of reactant concentrations. A significant density increment crossing the propagating front indicates that the fingering pattern is generated as a consequence of the buoyancy-driven instability due to the density changes of solute when the gap thickness is less than 4 mm. The velocity of the steepest descent in the propagating front depends almost linearly on the gap thickness but displays a saturation-like profile on the trithionate concentration as well as a maximum on the chlorite concentration. Numerical simulation using the Stokes–Brinkman Equation coupled to the reaction–diffusion processes, including hydrogen ion autocatalysis and consumption, reproduces the observed fingering fronts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1089-5639 1520-5215 1520-5215 |
DOI: | 10.1021/acs.jpca.6b01192 |