Learning Distributed Parameters of Land Surface Hydrologic Models Using a Generative Adversarial Network

Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstandin...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 60; no. 7
Main Authors Sun, Ruochen, Pan, Baoxiang, Duan, Qingyun
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.07.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance. Key Points A novel generative adversarial network‐based parameter estimation method is proposed to calibrate distributed land surface hydrologic models By employing a discriminator to identify model spatial biases, this method contributes to effective and spatially coherent parameter estimation This method can substantially reduce model simulated errors at grid scale and achieve consistent spatial performance
AbstractList Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance. Key Points A novel generative adversarial network‐based parameter estimation method is proposed to calibrate distributed land surface hydrologic models By employing a discriminator to identify model spatial biases, this method contributes to effective and spatially coherent parameter estimation This method can substantially reduce model simulated errors at grid scale and achieve consistent spatial performance
Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance.
Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance. A novel generative adversarial network‐based parameter estimation method is proposed to calibrate distributed land surface hydrologic models By employing a discriminator to identify model spatial biases, this method contributes to effective and spatially coherent parameter estimation This method can substantially reduce model simulated errors at grid scale and achieve consistent spatial performance
Abstract Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance.
Author Sun, Ruochen
Pan, Baoxiang
Duan, Qingyun
Author_xml – sequence: 1
  givenname: Ruochen
  orcidid: 0000-0003-2343-8331
  surname: Sun
  fullname: Sun, Ruochen
  organization: Hohai University
– sequence: 2
  givenname: Baoxiang
  orcidid: 0000-0002-3409-5568
  surname: Pan
  fullname: Pan, Baoxiang
  organization: Chinese Academy of Science
– sequence: 3
  givenname: Qingyun
  orcidid: 0000-0001-9955-1512
  surname: Duan
  fullname: Duan, Qingyun
  email: qyduan@hhu.edu.cn
  organization: Hohai University
BookMark eNp9kUtv1DAUhS1UJKaFHT_AEhsWBK5jJ06W1QBtpeGhgapL68a-GTxk4mInrebf1-0ghCrByrrWd865j2N2NIaRGHsp4K2Asn1XQqmu1iC1bOAJW4hWqUK3Wh6xBYCShZCtfsaOU9oCCFXVesF-rAjj6McNf-_TFH03T-T4V4y4o4li4qHnKxwd_zbHHi3x872LYQgbb_mn4GhI_DLdy5Gf0UgRJ39D_NTdZC1GjwP_TNNtiD-fs6c9Dole_H5P2OXHD9-X58Xqy9nF8nRVoKo1FMphI53uagGipUo7K8FhKxpRgew7pTX2uq571ytdWy1c1-ZKUV-VCkrq5Am7OPi6gFtzHf0O494E9ObhI8SNwTh5O5DRUlVSZcPaOdWQQgXCgshZ0DU5O3u9Pnhdx_BrpjSZnU-WhgFHCnMyUlRSg65bldFXj9BtmOOYJzUSmqpWuoE2U28OlI0hpUj9nwYFmPsTmr9PmPHyEW79lDccximiH_4lkgfRrR9o_98Ac7VerkudZ5B3_uityQ
CitedBy_id crossref_primary_10_1016_j_watres_2024_122788
Cites_doi 10.1029/2018wr024178
10.1029/2019wr026085
10.1002/2015WR017910
10.1175/JHM‐D‐18‐0139.1
10.1029/2023JD039387
10.5281/zenodo.11123631
10.1007/s40641‐021‐00171‐5
10.1029/2005WR004362
10.1029/2021rg000742
10.1029/2022WR032929
10.1029/2020WR027385
10.1038/s41597‐020‐0369‐y
10.1175/bams‐d‐20‐0094.1
10.1029/2007WR006615
10.1029/2022WR031966
10.5194/hess‐21‐4323‐2017
10.1016/j.jhydrol.2004.01.002
10.1029/2008wr007327
10.1109/ICCV.2017.244
10.1038/s41586‐019‐0912‐1
10.1002/2017wr022148
10.1016/j.jhydrol.2009.08.003
10.5194/hess‐19‐2409‐2015
10.1016/j.jhydrol.2022.128594
10.5194/hess‐18‐67‐2014
10.1029/2007wr006513
10.1175/2007MWR2123.1
10.1109/CVPR.2019.00453
10.1016/S0022‐1694(96)03329‐X
10.1007/978‐3‐319‐24574‐4_28
10.1038/s43017‐023‐00450‐9
10.1016/j.jhydrol.2017.09.041
10.1029/94JD00483
10.1038/s41467‐021‐26107‐z
10.5194/hess‐21‐3427‐2017
10.5194/gmd‐10‐1903‐2017
10.1002/hyp.6989
10.1029/2003JD003517
10.1029/91WR02985
10.1029/2019jd031485
10.1002/2015wr017498
10.1109/ICCV.2017.304
10.1002/2014wr016607
10.1002/jame.20026
10.1029/2009wr008066
10.1038/s41586‐021‐03854‐z
10.1175/jhm‐d‐12‐0149.1
10.1109/CVPR.2017.632
10.1029/2020wr029001
10.1029/2022WR032064
10.3390/rs12030428
10.1002/2017wr020401
10.1016/j.jhydrol.2023.129944
10.1029/2020WR028740
10.1016/j.advwatres.2020.103667
10.5194/gmd‐11‐3481‐2018
10.1029/2021ms002509
ContentType Journal Article
Copyright 2024. The Authors.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2024WR037380
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7345347af6dd48e4a401c011810b8e57
10_1029_2024WR037380
WRCR27370
Genre researchArticle
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Second Tibetan Plateau Scientific Expedition and Research Program
  funderid: 20190ZKK0208
– fundername: Scientific Research Start‐up Foundation for High‐level Talents of Hohai University
  funderid: 522020012
– fundername: Key Scientific and Technological Project of the Ministry of Water Resources. P.R.C
  funderid: SKS‐2022001
– fundername: National Natural Science Foundation of China
  funderid: 42101046
– fundername: National Key Research and Development Program of China
  funderid: 2021YFC3201102; 2023YFC3007705
– fundername: Fundamental Research Funds for the Central Universities
  funderid: B240201161
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
WIN
7S9
L.6
ID FETCH-LOGICAL-a4670-4da83d7b61019e57dc30da9181503fb477af766fdf476c71db966f4ef52402eb3
IEDL.DBID DOA
ISSN 0043-1397
IngestDate Wed Aug 27 01:28:37 EDT 2025
Fri Jul 11 18:31:29 EDT 2025
Wed Aug 13 09:22:01 EDT 2025
Tue Jul 01 05:25:14 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Sun Jul 06 04:45:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4670-4da83d7b61019e57dc30da9181503fb477af766fdf476c71db966f4ef52402eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2343-8331
0000-0001-9955-1512
0000-0002-3409-5568
OpenAccessLink https://doaj.org/article/7345347af6dd48e4a401c011810b8e57
PQID 3085647809
PQPubID 105507
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_7345347af6dd48e4a401c011810b8e57
proquest_miscellaneous_3153707694
proquest_journals_3085647809
crossref_primary_10_1029_2024WR037380
crossref_citationtrail_10_1029_2024WR037380
wiley_primary_10_1029_2024WR037380_WRCR27370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 4
2019; 55
1997; 198
2014; 27
2019; 566
2020; 56
2020; 12
2020; 125
2023; 624
2024
2022; 614
2013; 5
2017; 554
2020; 7
2017; 30
2013; 14
2021; 597
2004; 292
2008; 22
2014; 18
2021; 7
2015; 19
2015; 18
2021; 102
2015; 51
2023; 59
2024; 129
2017; 21
2016; 52
2009; 377
2004; 109
2021; 57
2020a; 143
2021; 13
2018; 19
2017; 53
2021; 59
2006; 42
2021; 12
2010; 46
2017; 10
1992; 28
2019
1994; 99
2018
2022; 58
2017
2008; 44
2015
2014
2008; 136
2013
2018; 11
2020b; 56
2018; 54
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Zhu J. Y. (e_1_2_9_67_1) 2017; 30
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Liu Y. (e_1_2_9_36_1) 2018
Bai Y. (e_1_2_9_3_1) 2018
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Kingma D. P. (e_1_2_9_30_1) 2013
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Goodfellow I. (e_1_2_9_17_1) 2014; 27
Radford A. (e_1_2_9_47_1) 2015
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 136
  start-page: 78
  issue: 1
  year: 2008
  end-page: 97
  article-title: Scale‐selective verification of rainfall accumulations from high‐resolution forecasts of convective events
  publication-title: Monthly Weather Review
– volume: 57
  issue: 9
  year: 2021
  article-title: The abuse of popular performance metrics in hydrologic modeling
  publication-title: Water Resources Research
– volume: 109
  issue: D7
  year: 2004
  article-title: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project
  publication-title: Journal of Geophysical Research
– volume: 42
  issue: 3
  year: 2006
  article-title: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology
  publication-title: Water Resources Research
– volume: 597
  start-page: 672
  issue: 7878
  year: 2021
  end-page: 677
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
– volume: 125
  issue: 17
  year: 2020
  article-title: Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 292
  start-page: 281
  issue: 1
  year: 2004
  end-page: 295
  article-title: Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 552
  issue: 8
  year: 2023
  end-page: 567
  article-title: Differentiable modelling to unify machine learning and physical models for geosciences
  publication-title: Nature Reviews Earth and Environment
– volume: 12
  issue: 3
  year: 2020
  article-title: Satellite‐based evapotranspiration in hydrological model calibration
  publication-title: Remote Sensing
– volume: 57
  issue: 11
  year: 2021
  article-title: Multi‐objective adaptive surrogate modeling‐based optimization for distributed environmental models based on grid sampling
  publication-title: Water Resources Research
– volume: 53
  start-page: 8020
  issue: 9
  year: 2017
  end-page: 8040
  article-title: Towards seamless large‐domain parameter estimation for hydrologic models
  publication-title: Water Resources Research
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  article-title: Deep learning and process understanding for data‐driven Earth system science
  publication-title: Nature
– volume: 18
  start-page: 67
  issue: 1
  year: 2014
  end-page: 84
  article-title: A large‐scale, high‐resolution hydrological model parameter data set for climate change impact assessment for the conterminous US
  publication-title: Hydrology and Earth System Sciences
– volume: 143
  year: 2020a
  article-title: Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies
  publication-title: Advances in Water Resources
– year: 2018
– volume: 46
  issue: 1
  year: 2010
  article-title: On the use of spatial regularization strategies to improve calibration of distributed watershed models
  publication-title: Water Resources Research
– volume: 198
  start-page: 69
  issue: 1
  year: 1997
  end-page: 97
  article-title: Parameterisation, calibration and validation of distributed hydrological models
  publication-title: Journal of Hydrology
– year: 2014
– volume: 58
  issue: 12
  year: 2022
  article-title: Hydrologic model calibration with remote sensing data products in global large basins
  publication-title: Water Resources Research
– volume: 624
  year: 2023
  article-title: A surrogate modeling method for distributed land surface hydrological models based on deep learning
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 2409
  issue: 5
  year: 2015
  end-page: 2425
  article-title: Multi‐objective parameter optimization of common land model using adaptive surrogate modeling
  publication-title: Hydrology and Earth System Sciences
– start-page: 4401
  year: 2019
  end-page: 4410
– start-page: 2223
  year: 2017
  end-page: 2232
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 44
  issue: 12
  year: 2008
  article-title: A spatial regularization approach to parameter estimation for a distributed watershed model
  publication-title: Water Resources Research
– volume: 21
  start-page: 3427
  issue: 7
  year: 2017
  end-page: 3440
  article-title: The evolution of process‐based hydrologic models: Historical challenges and the collective quest for physical realism
  publication-title: Hydrology and Earth System Sciences
– volume: 13
  issue: 10
  year: 2021
  article-title: Learning to correct climate projection biases
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 377
  start-page: 80
  issue: 1
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– volume: 14
  start-page: 869
  issue: 3
  year: 2013
  end-page: 887
  article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling
  publication-title: Journal of Hydrometeorology
– volume: 51
  start-page: 10078
  issue: 12
  year: 2015
  end-page: 10091
  article-title: Accelerating advances in continental domain hydrologic modeling
  publication-title: Water Resources Research
– volume: 129
  issue: 3
  year: 2024
  article-title: Terrestrial evapotranspiration over China from 1982 to 2020: Consistency of multiple data sets and impact of input data
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 18
  start-page: 234
  year: 2015
  end-page: 241
  article-title: U‐net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer‐Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Proceedings, Part III
– volume: 51
  start-page: 1225
  issue: 2
  year: 2015
  end-page: 1246
  article-title: Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF‐analysis benchmarked by the human perception and evaluated against a modeling case study
  publication-title: Water Resources Research
– volume: 46
  issue: 5
  year: 2010
  article-title: Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale
  publication-title: Water Resources Research
– volume: 22
  start-page: 3802
  issue: 18
  year: 2008
  end-page: 3813
  article-title: Reconciling theory with observations: Elements of a diagnostic approach to model evaluation
  publication-title: Hydrological Processes
– volume: 7
  start-page: 25
  issue: 1
  year: 2020
  article-title: The first high‐resolution meteorological forcing dataset for land process studies over China
  publication-title: Scientific Data
– volume: 30
  year: 2017
  article-title: Toward multimodal image‐to‐image translation
  publication-title: Advances in Neural Information Processing Systems
– volume: 5
  start-page: 212
  issue: 2
  year: 2013
  end-page: 224
  article-title: A China data set of soil properties for land surface modeling
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 28
  start-page: 1015
  issue: 4
  year: 1992
  end-page: 1031
  article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models
  publication-title: Water Resources Research
– volume: 99
  start-page: 14415
  issue: D7
  year: 1994
  end-page: 14428
  article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models
  publication-title: Journal of Geophysical Research
– volume: 55
  start-page: 7784
  issue: 9
  year: 2019
  end-page: 7803
  article-title: Quest of calibration density and consistency in hydrologic modeling: Distributed parameter calibration against streamflow characteristics
  publication-title: Water Resources Research
– volume: 44
  issue: 9
  year: 2008
  article-title: An efficient calibration method for continental‐scale land surface modeling
  publication-title: Water Resources Research
– volume: 58
  issue: 12
  year: 2022
  article-title: Automatic regionalization of model parameters for hydrological models
  publication-title: Water Resources Research
– start-page: 3743
  year: 2018
  end-page: 3751
– start-page: 206
  year: 2018
  end-page: 221
– volume: 56
  issue: 1
  year: 2020b
  article-title: Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets
  publication-title: Water Resources Research
– volume: 102
  start-page: E929
  issue: 5
  year: 2021
  end-page: E947
  article-title: CNRD v1.0: A high‐quality natural runoff dataset for hydrological and climate studies in China
  publication-title: Bulletin of the American Meteorological Society
– volume: 554
  start-page: 680
  year: 2017
  end-page: 692
  article-title: Effect of heteroscedasticity treatment in residual error models on model calibration and prediction uncertainty estimation
  publication-title: Journal of Hydrology
– volume: 59
  issue: 3
  year: 2021
  article-title: Deep learning for geophysics: Current and future trends
  publication-title: Reviews of Geophysics
– volume: 21
  start-page: 4323
  issue: 9
  year: 2017
  end-page: 4346
  article-title: Toward seamless hydrologic predictions across spatial scales
  publication-title: Hydrology and Earth System Sciences
– volume: 7
  start-page: 45
  issue: 2
  year: 2021
  end-page: 71
  article-title: Advances in land surface modelling
  publication-title: Current Climate Change Reports
– year: 2024
  article-title: Generative adversarial network‐based parameter optimization (GAN‐PO)
  publication-title: Zenodo
– volume: 10
  start-page: 1903
  issue: 5
  year: 2017
  end-page: 1925
  article-title: GLEAM v3: Satellite‐based land evaporation and root‐zone soil moisture
  publication-title: Geoscientific Model Development
– volume: 56
  issue: 10
  year: 2020
  article-title: Function space optimization: A symbolic regression method for estimating parameter transfer functions for hydrological models
  publication-title: Water Resources Research
– volume: 52
  start-page: 2350
  issue: 3
  year: 2016
  end-page: 2365
  article-title: Improving the theoretical underpinnings of process‐based hydrologic models
  publication-title: Water Resources Research
– volume: 11
  start-page: 3481
  issue: 8
  year: 2018
  end-page: 3496
  article-title: The variable infiltration capacity model version 5 (VIC‐5): Infrastructure improvements for new applications and reproducibility
  publication-title: Geoscientific Model Development
– start-page: 2794
  year: 2017
  end-page: 2802
– volume: 12
  issue: 1
  year: 2021
  article-title: From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling
  publication-title: Nature Communications
– year: 2015
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv preprint arXiv:1511.06434
– year: 2013
  article-title: Auto‐encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– volume: 54
  start-page: 381
  issue: 1
  year: 2018
  end-page: 406
  article-title: Training‐image based geostatistical inversion using a spatial generative adversarial neural network
  publication-title: Water Resources Research
– volume: 19
  start-page: 1853
  issue: 11
  year: 2018
  end-page: 1879
  article-title: Comprehensive evaluation of the variable infiltration capacity (VIC) model in the north American land data assimilation system
  publication-title: Journal of Hydrometeorology
– volume: 59
  issue: 2
  year: 2023
  article-title: Can hydrological models benefit from using global soil moisture, evapotranspiration, and runoff products as calibration targets?
  publication-title: Water Resources Research
– year: 2017
– start-page: 1125
  year: 2017
  end-page: 1134
– volume: 614
  year: 2022
  article-title: Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods
  publication-title: Journal of Hydrology
– ident: e_1_2_9_64_1
  doi: 10.1029/2018wr024178
– ident: e_1_2_9_12_1
  doi: 10.1029/2019wr026085
– ident: e_1_2_9_8_1
  doi: 10.1002/2015WR017910
– ident: e_1_2_9_63_1
  doi: 10.1175/JHM‐D‐18‐0139.1
– ident: e_1_2_9_39_1
  doi: 10.1029/2023JD039387
– ident: e_1_2_9_59_1
  doi: 10.5281/zenodo.11123631
– ident: e_1_2_9_5_1
  doi: 10.1007/s40641‐021‐00171‐5
– ident: e_1_2_9_31_1
  doi: 10.1029/2005WR004362
– ident: e_1_2_9_65_1
  doi: 10.1029/2021rg000742
– volume: 30
  year: 2017
  ident: e_1_2_9_67_1
  article-title: Toward multimodal image‐to‐image translation
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_35_1
  doi: 10.1029/2022WR032929
– ident: e_1_2_9_14_1
  doi: 10.1029/2020WR027385
– ident: e_1_2_9_22_1
  doi: 10.1038/s41597‐020‐0369‐y
– ident: e_1_2_9_18_1
  doi: 10.1175/bams‐d‐20‐0094.1
– ident: e_1_2_9_46_1
  doi: 10.1029/2007WR006615
– ident: e_1_2_9_15_1
  doi: 10.1029/2022WR031966
– ident: e_1_2_9_54_1
  doi: 10.5194/hess‐21‐4323‐2017
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jhydrol.2004.01.002
– ident: e_1_2_9_53_1
  doi: 10.1029/2008wr007327
– ident: e_1_2_9_66_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_9_50_1
  doi: 10.1038/s41586‐019‐0912‐1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_33_1
  doi: 10.1002/2017wr022148
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: e_1_2_9_16_1
  doi: 10.5194/hess‐19‐2409‐2015
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jhydrol.2022.128594
– ident: e_1_2_9_43_1
  doi: 10.5194/hess‐18‐67‐2014
– ident: e_1_2_9_61_1
  doi: 10.1029/2007wr006513
– ident: e_1_2_9_51_1
  doi: 10.1175/2007MWR2123.1
– ident: e_1_2_9_28_1
  doi: 10.1109/CVPR.2019.00453
– ident: e_1_2_9_49_1
  doi: 10.1016/S0022‐1694(96)03329‐X
– ident: e_1_2_9_52_1
  doi: 10.1007/978‐3‐319‐24574‐4_28
– ident: e_1_2_9_56_1
  doi: 10.1038/s43017‐023‐00450‐9
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jhydrol.2017.09.041
– ident: e_1_2_9_34_1
  doi: 10.1029/94JD00483
– ident: e_1_2_9_62_1
  doi: 10.1038/s41467‐021‐26107‐z
– start-page: 3743
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2018
  ident: e_1_2_9_36_1
– ident: e_1_2_9_7_1
  doi: 10.5194/hess‐21‐3427‐2017
– ident: e_1_2_9_40_1
  doi: 10.5194/gmd‐10‐1903‐2017
– ident: e_1_2_9_20_1
  doi: 10.1002/hyp.6989
– ident: e_1_2_9_37_1
  doi: 10.1029/2003JD003517
– ident: e_1_2_9_13_1
  doi: 10.1029/91WR02985
– ident: e_1_2_9_4_1
  doi: 10.1029/2019jd031485
– ident: e_1_2_9_6_1
– ident: e_1_2_9_2_1
  doi: 10.1002/2015wr017498
– ident: e_1_2_9_38_1
  doi: 10.1109/ICCV.2017.304
– ident: e_1_2_9_32_1
  doi: 10.1002/2014wr016607
– ident: e_1_2_9_55_1
  doi: 10.1002/jame.20026
– ident: e_1_2_9_45_1
  doi: 10.1029/2009wr008066
– ident: e_1_2_9_48_1
  doi: 10.1038/s41586‐021‐03854‐z
– start-page: 206
  volume-title: Proceedings of the European conference on computer vision (ECCV)
  year: 2018
  ident: e_1_2_9_3_1
– ident: e_1_2_9_10_1
  doi: 10.1175/jhm‐d‐12‐0149.1
– ident: e_1_2_9_24_1
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_9_9_1
  doi: 10.1029/2020wr029001
– ident: e_1_2_9_41_1
  doi: 10.1029/2022WR032064
– ident: e_1_2_9_26_1
  doi: 10.3390/rs12030428
– ident: e_1_2_9_42_1
  doi: 10.1002/2017wr020401
– ident: e_1_2_9_58_1
  doi: 10.1016/j.jhydrol.2023.129944
– year: 2015
  ident: e_1_2_9_47_1
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv preprint arXiv:1511.06434
– year: 2013
  ident: e_1_2_9_30_1
  article-title: Auto‐encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– volume: 27
  start-page: 2672
  year: 2014
  ident: e_1_2_9_17_1
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_57_1
  doi: 10.1029/2020WR028740
– ident: e_1_2_9_11_1
  doi: 10.1016/j.advwatres.2020.103667
– ident: e_1_2_9_21_1
  doi: 10.5194/gmd‐11‐3481‐2018
– ident: e_1_2_9_29_1
– ident: e_1_2_9_44_1
  doi: 10.1029/2021ms002509
SSID ssj0014567
Score 2.4756517
Snippet Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous...
Abstract Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ablation
Artificial neural networks
basins
Bias
Calibration
China
Compression
deep learning
Discriminators
distributed parameters
Evapotranspiration
Evapotranspiration models
generative adversarial network
Generative adversarial networks
Hydrologic models
Hydrologic networks
Infiltration capacity
land surface hydrologic models
Machine learning
model validation
Neural networks
Objective function
Parameter identification
Parameter uncertainty
Parameters
Spatial discrimination learning
water
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQPdBL1RdqWlq5UjmVqE7iV46UFq2qgtACglvkJxxQttqwB_49M443Wg6t1FsUj6PE9tjfZGa-IeSL8K0KXrtSV8KWvPa21LYOJeik5Vw0LqQs15NTObvkv67Fdf7hhrkwIz_E9MMNNSPt16jgxg6ZbAA5MsFq51dzhsw8YLI_w-xa5M6v-dnkRQBwoNYeZkQ6OfAd-n_b7P3kSErM_U_g5iZoTafO8UvyIsNFejjO7yuyFfrXZGedTTzAda5ifvvwhtxmstQb-gPpcLGSVfD0zGD8FZJo0kWkv03v6flqGY0LdPbgl-PmR7Em2t1AUwQBNXRko8atkKaSzYPBhUpPx6Dxt-Ty-OfF0azMlRRKA4POSu6NbryygJWqNgjlXcO8aeF0F6yJlitlopIy-siVdKryFqygyEMU6HwBe3uXbPeLPrwj1OsqaHiqrJzkLBpTi2C499ZI7YwVBfm6HszOZZpxrHZx1yV3d912m0NfkP1J-s9Ir_EXue84L5MMkmKnG4vlTZd1rFMNLC4OnyK95zpwA7ajS5m1zGr46oLsrWe1y5o6dA1gTsy3ZW1BPk_NoGPoODF9WKxABo4FxZRseUEO0mr458t2V_OjOcBCxd7_n_gH8hwbxmjgPbJ9v1yFj4B57u2ntLAfAeu49sA
  priority: 102
  providerName: Wiley-Blackwell
Title Learning Distributed Parameters of Land Surface Hydrologic Models Using a Generative Adversarial Network
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037380
https://www.proquest.com/docview/3085647809
https://www.proquest.com/docview/3153707694
https://doaj.org/article/7345347af6dd48e4a401c011810b8e57
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoF3qpWmjVtBS5Ej2VqE7iV44tBa0qQGgLglvkJxxQttplD_z7zjjOajm0XLhFycSyxmP7G83MN4TsC9-q4LUrdSVsyWtvS23rUMKetJyLxoVU5Xp6JieX_Ne1uF5r9YU5YQM98KC4b6qBP7gyUXrPdeAGHAKXyiWZ1UGkOnK480ZnKscPABaoMbaMGCenvLO6RW-fX00ZMvqwR5dR4ux_BDTX4Wq6b45fk1cZKNLvwwTfkI3Qb5OtsY54Ac-5f_ntww65zTSpN_QnEuFiD6vg6bnBzCukz6SzSE9M7-nv5TwaF-jkwc-HY49iN7S7BU25A9TQgYcaD0GamjUvDJooPRvSxd-Sy-Oji8NJmXsolAbUzUrujW68soCSqhbU5V3DvGlBfYI10XIFmlVSRh-5kk5V3oL_E3mIAsMu4Gm_I5v9rA_vCfW6ChpGlZWTnEVjahEM994aqZ2xoiBfR2V2LhOMY5-Luy4Fuuu2W1d9Qb6spP8MxBr_kPuB67KSQTrs9AKMpMtG0j1lJAXZHVe1y3t00TWANrHSlrUF-bz6DLsLQyamD7MlyMCFoJiSLS_IQbKG_062u5oeTgEQKvbhOab9kbzE0Yfs4F2yeT9fhk-Age7tHnlR8_O9ZPR_ASNm_j8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOZQL4ilSChgJThCRh185QqFaYLuqllbtzfKzPVTZard76L_vjOONtgeQuEXJJIofY3_jmfmGkA_cdzJ45UpVc1uyxttS2SaUoJOWMd66kLJcj2Zicsp-nfPzXOcUc2EGfojxwA01I63XqOB4IJ3ZBpAkE8x2djavkJoHbPaHTDQSNbNhx6MbAdCB3LiYEerkyHd4_8v22_f2pETdfw9vbqPWtO0cPiGPM16kX4cBfkoehP4Z2d2kE6_gOpcxv7x9Ti4zW-oF_Y58uFjKKnh6bDAAC1k06SLSqek9_bNeRuMCndz65bD6USyKdrWiKYSAGjrQUeNaSFPN5pXBmUpnQ9T4C3J6-OPkYFLmUgqlgV6vSuaNar20AJbqLnDpXVt508H2zqs2WialiVKI6COTwsnaWzCDIguRo_cFDO6XZKdf9OEVoV7VQcFXRe0Eq6IxDQ-GeW-NUM5YXpBPm87ULvOMY7mLK5383U2nt7u-IB9H6euBX-Mvct9wXEYZZMVONxbLC52VTMsWZheDpgjvmQrMgPHoUmptZRW0uiD7m1HVWVVXugXQiQm3VVeQ9-NjUDL0nJg-LNYgA_uCrKToWEE-p9nwz5_VZ_ODOeBCWe39n_g7sjs5OZrq6c_Z79fkEQoNocH7ZOdmuQ5vAADd2Ldpkt8BR0n6LA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkYAL4ilSWjASnCDC2Ti2c6SP1QJltVqo2pvlZ3uostVu99B_z4zjjbaHInGLkkkUP8b-xjPzDSEfG9_K4JUrVdXYko-8LZUdhRJ00nLe1C6kLNdfUzE55T_Om_N84Ia5MD0_xHDghpqR1mtU8GsfM9kAcmSC1c7P5gyZecBkf5j8fcjszGeDFwHAgdx4mBHp5MB3eP_r9tt3tqTE3H8Hbm6D1rTrjJ-Rpxku0m_9-D4nD0L3gjzeZBOv4DpXMb-8fUkuM1nqBT1COlysZBU8nRmMv0ISTbqI9MR0nv5eL6NxgU5u_bJf_CjWRLta0RRBQA3t2ahxKaSpZPPK4ESl0z5o_BU5HR__OZyUuZJCaaDTWcm9UbWXFrBS1YZGelczb1rY3RtWR8ulNFEKEX3kUjhZeQtWUOQhNuh8AXv7NdnpFl14Q6hXVVDwVVE5wVk0ZtQEw723RihnbFOQz5vO1C7TjGO1iyud3N2jVm93fUE-DdLXPb3GPXIHOC6DDJJipxuL5YXOOqZlDZOLQ1OE91wFbsB2dCmzllkFrS7I3mZUddbUla4Bc2K-LWsL8mF4DDqGjhPThcUaZGBbkEyKlhfkS5oN__xZfTY_nAMslGz3_8Tfk0ezo7E--T79-ZY8QZk-MHiP7Nws12Ef4M-NfZfm-F_QFvle
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Distributed+Parameters+of+Land+Surface+Hydrologic+Models+Using+a+Generative+Adversarial+Network&rft.jtitle=Water+resources+research&rft.au=Sun%2C+Ruochen&rft.au=Pan%2C+Baoxiang&rft.au=Duan%2C+Qingyun&rft.date=2024-07-01&rft.issn=0043-1397&rft.volume=60&rft.issue=7+p.e2024WR037380-&rft_id=info:doi/10.1029%2F2024WR037380&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon