Learning Distributed Parameters of Land Surface Hydrologic Models Using a Generative Adversarial Network
Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstandin...
Saved in:
Published in | Water resources research Vol. 60; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.07.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance.
Key Points
A novel generative adversarial network‐based parameter estimation method is proposed to calibrate distributed land surface hydrologic models
By employing a discriminator to identify model spatial biases, this method contributes to effective and spatially coherent parameter estimation
This method can substantially reduce model simulated errors at grid scale and achieve consistent spatial performance |
---|---|
AbstractList | Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance.
Key Points
A novel generative adversarial network‐based parameter estimation method is proposed to calibrate distributed land surface hydrologic models
By employing a discriminator to identify model spatial biases, this method contributes to effective and spatially coherent parameter estimation
This method can substantially reduce model simulated errors at grid scale and achieve consistent spatial performance Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance. Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance. A novel generative adversarial network‐based parameter estimation method is proposed to calibrate distributed land surface hydrologic models By employing a discriminator to identify model spatial biases, this method contributes to effective and spatially coherent parameter estimation This method can substantially reduce model simulated errors at grid scale and achieve consistent spatial performance Abstract Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance. |
Author | Sun, Ruochen Pan, Baoxiang Duan, Qingyun |
Author_xml | – sequence: 1 givenname: Ruochen orcidid: 0000-0003-2343-8331 surname: Sun fullname: Sun, Ruochen organization: Hohai University – sequence: 2 givenname: Baoxiang orcidid: 0000-0002-3409-5568 surname: Pan fullname: Pan, Baoxiang organization: Chinese Academy of Science – sequence: 3 givenname: Qingyun orcidid: 0000-0001-9955-1512 surname: Duan fullname: Duan, Qingyun email: qyduan@hhu.edu.cn organization: Hohai University |
BookMark | eNp9kUtv1DAUhS1UJKaFHT_AEhsWBK5jJ06W1QBtpeGhgapL68a-GTxk4mInrebf1-0ghCrByrrWd865j2N2NIaRGHsp4K2Asn1XQqmu1iC1bOAJW4hWqUK3Wh6xBYCShZCtfsaOU9oCCFXVesF-rAjj6McNf-_TFH03T-T4V4y4o4li4qHnKxwd_zbHHi3x872LYQgbb_mn4GhI_DLdy5Gf0UgRJ39D_NTdZC1GjwP_TNNtiD-fs6c9Dole_H5P2OXHD9-X58Xqy9nF8nRVoKo1FMphI53uagGipUo7K8FhKxpRgew7pTX2uq571ytdWy1c1-ZKUV-VCkrq5Am7OPi6gFtzHf0O494E9ObhI8SNwTh5O5DRUlVSZcPaOdWQQgXCgshZ0DU5O3u9Pnhdx_BrpjSZnU-WhgFHCnMyUlRSg65bldFXj9BtmOOYJzUSmqpWuoE2U28OlI0hpUj9nwYFmPsTmr9PmPHyEW79lDccximiH_4lkgfRrR9o_98Ac7VerkudZ5B3_uityQ |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_122788 |
Cites_doi | 10.1029/2018wr024178 10.1029/2019wr026085 10.1002/2015WR017910 10.1175/JHM‐D‐18‐0139.1 10.1029/2023JD039387 10.5281/zenodo.11123631 10.1007/s40641‐021‐00171‐5 10.1029/2005WR004362 10.1029/2021rg000742 10.1029/2022WR032929 10.1029/2020WR027385 10.1038/s41597‐020‐0369‐y 10.1175/bams‐d‐20‐0094.1 10.1029/2007WR006615 10.1029/2022WR031966 10.5194/hess‐21‐4323‐2017 10.1016/j.jhydrol.2004.01.002 10.1029/2008wr007327 10.1109/ICCV.2017.244 10.1038/s41586‐019‐0912‐1 10.1002/2017wr022148 10.1016/j.jhydrol.2009.08.003 10.5194/hess‐19‐2409‐2015 10.1016/j.jhydrol.2022.128594 10.5194/hess‐18‐67‐2014 10.1029/2007wr006513 10.1175/2007MWR2123.1 10.1109/CVPR.2019.00453 10.1016/S0022‐1694(96)03329‐X 10.1007/978‐3‐319‐24574‐4_28 10.1038/s43017‐023‐00450‐9 10.1016/j.jhydrol.2017.09.041 10.1029/94JD00483 10.1038/s41467‐021‐26107‐z 10.5194/hess‐21‐3427‐2017 10.5194/gmd‐10‐1903‐2017 10.1002/hyp.6989 10.1029/2003JD003517 10.1029/91WR02985 10.1029/2019jd031485 10.1002/2015wr017498 10.1109/ICCV.2017.304 10.1002/2014wr016607 10.1002/jame.20026 10.1029/2009wr008066 10.1038/s41586‐021‐03854‐z 10.1175/jhm‐d‐12‐0149.1 10.1109/CVPR.2017.632 10.1029/2020wr029001 10.1029/2022WR032064 10.3390/rs12030428 10.1002/2017wr020401 10.1016/j.jhydrol.2023.129944 10.1029/2020WR028740 10.1016/j.advwatres.2020.103667 10.5194/gmd‐11‐3481‐2018 10.1029/2021ms002509 |
ContentType | Journal Article |
Copyright | 2024. The Authors. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Authors. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 DOA |
DOI | 10.1029/2024WR037380 |
DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1944-7973 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7345347af6dd48e4a401c011810b8e57 10_1029_2024WR037380 WRCR27370 |
Genre | researchArticle |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Second Tibetan Plateau Scientific Expedition and Research Program funderid: 20190ZKK0208 – fundername: Scientific Research Start‐up Foundation for High‐level Talents of Hohai University funderid: 522020012 – fundername: Key Scientific and Technological Project of the Ministry of Water Resources. P.R.C funderid: SKS‐2022001 – fundername: National Natural Science Foundation of China funderid: 42101046 – fundername: National Key Research and Development Program of China funderid: 2021YFC3201102; 2023YFC3007705 – fundername: Fundamental Research Funds for the Central Universities funderid: B240201161 |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 WIN 7S9 L.6 |
ID | FETCH-LOGICAL-a4670-4da83d7b61019e57dc30da9181503fb477af766fdf476c71db966f4ef52402eb3 |
IEDL.DBID | DOA |
ISSN | 0043-1397 |
IngestDate | Wed Aug 27 01:28:37 EDT 2025 Fri Jul 11 18:31:29 EDT 2025 Wed Aug 13 09:22:01 EDT 2025 Tue Jul 01 05:25:14 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Sun Jul 06 04:45:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4670-4da83d7b61019e57dc30da9181503fb477af766fdf476c71db966f4ef52402eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2343-8331 0000-0001-9955-1512 0000-0002-3409-5568 |
OpenAccessLink | https://doaj.org/article/7345347af6dd48e4a401c011810b8e57 |
PQID | 3085647809 |
PQPubID | 105507 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7345347af6dd48e4a401c011810b8e57 proquest_miscellaneous_3153707694 proquest_journals_3085647809 crossref_primary_10_1029_2024WR037380 crossref_citationtrail_10_1029_2024WR037380 wiley_primary_10_1029_2024WR037380_WRCR27370 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 20240701 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Water resources research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2023; 4 2019; 55 1997; 198 2014; 27 2019; 566 2020; 56 2020; 12 2020; 125 2023; 624 2024 2022; 614 2013; 5 2017; 554 2020; 7 2017; 30 2013; 14 2021; 597 2004; 292 2008; 22 2014; 18 2021; 7 2015; 19 2015; 18 2021; 102 2015; 51 2023; 59 2024; 129 2017; 21 2016; 52 2009; 377 2004; 109 2021; 57 2020a; 143 2021; 13 2018; 19 2017; 53 2021; 59 2006; 42 2021; 12 2010; 46 2017; 10 1992; 28 2019 1994; 99 2018 2022; 58 2017 2008; 44 2015 2014 2008; 136 2013 2018; 11 2020b; 56 2018; 54 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Zhu J. Y. (e_1_2_9_67_1) 2017; 30 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Liu Y. (e_1_2_9_36_1) 2018 Bai Y. (e_1_2_9_3_1) 2018 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Kingma D. P. (e_1_2_9_30_1) 2013 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 Goodfellow I. (e_1_2_9_17_1) 2014; 27 Radford A. (e_1_2_9_47_1) 2015 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 136 start-page: 78 issue: 1 year: 2008 end-page: 97 article-title: Scale‐selective verification of rainfall accumulations from high‐resolution forecasts of convective events publication-title: Monthly Weather Review – volume: 57 issue: 9 year: 2021 article-title: The abuse of popular performance metrics in hydrologic modeling publication-title: Water Resources Research – volume: 109 issue: D7 year: 2004 article-title: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project publication-title: Journal of Geophysical Research – volume: 42 issue: 3 year: 2006 article-title: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology publication-title: Water Resources Research – volume: 597 start-page: 672 issue: 7878 year: 2021 end-page: 677 article-title: Skilful precipitation nowcasting using deep generative models of radar publication-title: Nature – volume: 125 issue: 17 year: 2020 article-title: Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments publication-title: Journal of Geophysical Research: Atmospheres – volume: 292 start-page: 281 issue: 1 year: 2004 end-page: 295 article-title: Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model publication-title: Journal of Hydrology – volume: 4 start-page: 552 issue: 8 year: 2023 end-page: 567 article-title: Differentiable modelling to unify machine learning and physical models for geosciences publication-title: Nature Reviews Earth and Environment – volume: 12 issue: 3 year: 2020 article-title: Satellite‐based evapotranspiration in hydrological model calibration publication-title: Remote Sensing – volume: 57 issue: 11 year: 2021 article-title: Multi‐objective adaptive surrogate modeling‐based optimization for distributed environmental models based on grid sampling publication-title: Water Resources Research – volume: 53 start-page: 8020 issue: 9 year: 2017 end-page: 8040 article-title: Towards seamless large‐domain parameter estimation for hydrologic models publication-title: Water Resources Research – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 article-title: Deep learning and process understanding for data‐driven Earth system science publication-title: Nature – volume: 18 start-page: 67 issue: 1 year: 2014 end-page: 84 article-title: A large‐scale, high‐resolution hydrological model parameter data set for climate change impact assessment for the conterminous US publication-title: Hydrology and Earth System Sciences – volume: 143 year: 2020a article-title: Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies publication-title: Advances in Water Resources – year: 2018 – volume: 46 issue: 1 year: 2010 article-title: On the use of spatial regularization strategies to improve calibration of distributed watershed models publication-title: Water Resources Research – volume: 198 start-page: 69 issue: 1 year: 1997 end-page: 97 article-title: Parameterisation, calibration and validation of distributed hydrological models publication-title: Journal of Hydrology – year: 2014 – volume: 58 issue: 12 year: 2022 article-title: Hydrologic model calibration with remote sensing data products in global large basins publication-title: Water Resources Research – volume: 624 year: 2023 article-title: A surrogate modeling method for distributed land surface hydrological models based on deep learning publication-title: Journal of Hydrology – volume: 19 start-page: 2409 issue: 5 year: 2015 end-page: 2425 article-title: Multi‐objective parameter optimization of common land model using adaptive surrogate modeling publication-title: Hydrology and Earth System Sciences – start-page: 4401 year: 2019 end-page: 4410 – start-page: 2223 year: 2017 end-page: 2232 – volume: 27 start-page: 2672 year: 2014 end-page: 2680 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 44 issue: 12 year: 2008 article-title: A spatial regularization approach to parameter estimation for a distributed watershed model publication-title: Water Resources Research – volume: 21 start-page: 3427 issue: 7 year: 2017 end-page: 3440 article-title: The evolution of process‐based hydrologic models: Historical challenges and the collective quest for physical realism publication-title: Hydrology and Earth System Sciences – volume: 13 issue: 10 year: 2021 article-title: Learning to correct climate projection biases publication-title: Journal of Advances in Modeling Earth Systems – volume: 377 start-page: 80 issue: 1 year: 2009 end-page: 91 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: Journal of Hydrology – volume: 14 start-page: 869 issue: 3 year: 2013 end-page: 887 article-title: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling publication-title: Journal of Hydrometeorology – volume: 51 start-page: 10078 issue: 12 year: 2015 end-page: 10091 article-title: Accelerating advances in continental domain hydrologic modeling publication-title: Water Resources Research – volume: 129 issue: 3 year: 2024 article-title: Terrestrial evapotranspiration over China from 1982 to 2020: Consistency of multiple data sets and impact of input data publication-title: Journal of Geophysical Research: Atmospheres – volume: 18 start-page: 234 year: 2015 end-page: 241 article-title: U‐net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer‐Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Proceedings, Part III – volume: 51 start-page: 1225 issue: 2 year: 2015 end-page: 1246 article-title: Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF‐analysis benchmarked by the human perception and evaluated against a modeling case study publication-title: Water Resources Research – volume: 46 issue: 5 year: 2010 article-title: Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale publication-title: Water Resources Research – volume: 22 start-page: 3802 issue: 18 year: 2008 end-page: 3813 article-title: Reconciling theory with observations: Elements of a diagnostic approach to model evaluation publication-title: Hydrological Processes – volume: 7 start-page: 25 issue: 1 year: 2020 article-title: The first high‐resolution meteorological forcing dataset for land process studies over China publication-title: Scientific Data – volume: 30 year: 2017 article-title: Toward multimodal image‐to‐image translation publication-title: Advances in Neural Information Processing Systems – volume: 5 start-page: 212 issue: 2 year: 2013 end-page: 224 article-title: A China data set of soil properties for land surface modeling publication-title: Journal of Advances in Modeling Earth Systems – volume: 28 start-page: 1015 issue: 4 year: 1992 end-page: 1031 article-title: Effective and efficient global optimization for conceptual rainfall‐runoff models publication-title: Water Resources Research – volume: 99 start-page: 14415 issue: D7 year: 1994 end-page: 14428 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: Journal of Geophysical Research – volume: 55 start-page: 7784 issue: 9 year: 2019 end-page: 7803 article-title: Quest of calibration density and consistency in hydrologic modeling: Distributed parameter calibration against streamflow characteristics publication-title: Water Resources Research – volume: 44 issue: 9 year: 2008 article-title: An efficient calibration method for continental‐scale land surface modeling publication-title: Water Resources Research – volume: 58 issue: 12 year: 2022 article-title: Automatic regionalization of model parameters for hydrological models publication-title: Water Resources Research – start-page: 3743 year: 2018 end-page: 3751 – start-page: 206 year: 2018 end-page: 221 – volume: 56 issue: 1 year: 2020b article-title: Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets publication-title: Water Resources Research – volume: 102 start-page: E929 issue: 5 year: 2021 end-page: E947 article-title: CNRD v1.0: A high‐quality natural runoff dataset for hydrological and climate studies in China publication-title: Bulletin of the American Meteorological Society – volume: 554 start-page: 680 year: 2017 end-page: 692 article-title: Effect of heteroscedasticity treatment in residual error models on model calibration and prediction uncertainty estimation publication-title: Journal of Hydrology – volume: 59 issue: 3 year: 2021 article-title: Deep learning for geophysics: Current and future trends publication-title: Reviews of Geophysics – volume: 21 start-page: 4323 issue: 9 year: 2017 end-page: 4346 article-title: Toward seamless hydrologic predictions across spatial scales publication-title: Hydrology and Earth System Sciences – volume: 7 start-page: 45 issue: 2 year: 2021 end-page: 71 article-title: Advances in land surface modelling publication-title: Current Climate Change Reports – year: 2024 article-title: Generative adversarial network‐based parameter optimization (GAN‐PO) publication-title: Zenodo – volume: 10 start-page: 1903 issue: 5 year: 2017 end-page: 1925 article-title: GLEAM v3: Satellite‐based land evaporation and root‐zone soil moisture publication-title: Geoscientific Model Development – volume: 56 issue: 10 year: 2020 article-title: Function space optimization: A symbolic regression method for estimating parameter transfer functions for hydrological models publication-title: Water Resources Research – volume: 52 start-page: 2350 issue: 3 year: 2016 end-page: 2365 article-title: Improving the theoretical underpinnings of process‐based hydrologic models publication-title: Water Resources Research – volume: 11 start-page: 3481 issue: 8 year: 2018 end-page: 3496 article-title: The variable infiltration capacity model version 5 (VIC‐5): Infrastructure improvements for new applications and reproducibility publication-title: Geoscientific Model Development – start-page: 2794 year: 2017 end-page: 2802 – volume: 12 issue: 1 year: 2021 article-title: From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling publication-title: Nature Communications – year: 2015 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv preprint arXiv:1511.06434 – year: 2013 article-title: Auto‐encoding variational bayes publication-title: arXiv preprint arXiv:1312.6114 – volume: 54 start-page: 381 issue: 1 year: 2018 end-page: 406 article-title: Training‐image based geostatistical inversion using a spatial generative adversarial neural network publication-title: Water Resources Research – volume: 19 start-page: 1853 issue: 11 year: 2018 end-page: 1879 article-title: Comprehensive evaluation of the variable infiltration capacity (VIC) model in the north American land data assimilation system publication-title: Journal of Hydrometeorology – volume: 59 issue: 2 year: 2023 article-title: Can hydrological models benefit from using global soil moisture, evapotranspiration, and runoff products as calibration targets? publication-title: Water Resources Research – year: 2017 – start-page: 1125 year: 2017 end-page: 1134 – volume: 614 year: 2022 article-title: Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods publication-title: Journal of Hydrology – ident: e_1_2_9_64_1 doi: 10.1029/2018wr024178 – ident: e_1_2_9_12_1 doi: 10.1029/2019wr026085 – ident: e_1_2_9_8_1 doi: 10.1002/2015WR017910 – ident: e_1_2_9_63_1 doi: 10.1175/JHM‐D‐18‐0139.1 – ident: e_1_2_9_39_1 doi: 10.1029/2023JD039387 – ident: e_1_2_9_59_1 doi: 10.5281/zenodo.11123631 – ident: e_1_2_9_5_1 doi: 10.1007/s40641‐021‐00171‐5 – ident: e_1_2_9_31_1 doi: 10.1029/2005WR004362 – ident: e_1_2_9_65_1 doi: 10.1029/2021rg000742 – volume: 30 year: 2017 ident: e_1_2_9_67_1 article-title: Toward multimodal image‐to‐image translation publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_35_1 doi: 10.1029/2022WR032929 – ident: e_1_2_9_14_1 doi: 10.1029/2020WR027385 – ident: e_1_2_9_22_1 doi: 10.1038/s41597‐020‐0369‐y – ident: e_1_2_9_18_1 doi: 10.1175/bams‐d‐20‐0094.1 – ident: e_1_2_9_46_1 doi: 10.1029/2007WR006615 – ident: e_1_2_9_15_1 doi: 10.1029/2022WR031966 – ident: e_1_2_9_54_1 doi: 10.5194/hess‐21‐4323‐2017 – ident: e_1_2_9_23_1 doi: 10.1016/j.jhydrol.2004.01.002 – ident: e_1_2_9_53_1 doi: 10.1029/2008wr007327 – ident: e_1_2_9_66_1 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_9_50_1 doi: 10.1038/s41586‐019‐0912‐1 – ident: e_1_2_9_27_1 – ident: e_1_2_9_33_1 doi: 10.1002/2017wr022148 – ident: e_1_2_9_19_1 doi: 10.1016/j.jhydrol.2009.08.003 – ident: e_1_2_9_16_1 doi: 10.5194/hess‐19‐2409‐2015 – ident: e_1_2_9_25_1 doi: 10.1016/j.jhydrol.2022.128594 – ident: e_1_2_9_43_1 doi: 10.5194/hess‐18‐67‐2014 – ident: e_1_2_9_61_1 doi: 10.1029/2007wr006513 – ident: e_1_2_9_51_1 doi: 10.1175/2007MWR2123.1 – ident: e_1_2_9_28_1 doi: 10.1109/CVPR.2019.00453 – ident: e_1_2_9_49_1 doi: 10.1016/S0022‐1694(96)03329‐X – ident: e_1_2_9_52_1 doi: 10.1007/978‐3‐319‐24574‐4_28 – ident: e_1_2_9_56_1 doi: 10.1038/s43017‐023‐00450‐9 – ident: e_1_2_9_60_1 doi: 10.1016/j.jhydrol.2017.09.041 – ident: e_1_2_9_34_1 doi: 10.1029/94JD00483 – ident: e_1_2_9_62_1 doi: 10.1038/s41467‐021‐26107‐z – start-page: 3743 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2018 ident: e_1_2_9_36_1 – ident: e_1_2_9_7_1 doi: 10.5194/hess‐21‐3427‐2017 – ident: e_1_2_9_40_1 doi: 10.5194/gmd‐10‐1903‐2017 – ident: e_1_2_9_20_1 doi: 10.1002/hyp.6989 – ident: e_1_2_9_37_1 doi: 10.1029/2003JD003517 – ident: e_1_2_9_13_1 doi: 10.1029/91WR02985 – ident: e_1_2_9_4_1 doi: 10.1029/2019jd031485 – ident: e_1_2_9_6_1 – ident: e_1_2_9_2_1 doi: 10.1002/2015wr017498 – ident: e_1_2_9_38_1 doi: 10.1109/ICCV.2017.304 – ident: e_1_2_9_32_1 doi: 10.1002/2014wr016607 – ident: e_1_2_9_55_1 doi: 10.1002/jame.20026 – ident: e_1_2_9_45_1 doi: 10.1029/2009wr008066 – ident: e_1_2_9_48_1 doi: 10.1038/s41586‐021‐03854‐z – start-page: 206 volume-title: Proceedings of the European conference on computer vision (ECCV) year: 2018 ident: e_1_2_9_3_1 – ident: e_1_2_9_10_1 doi: 10.1175/jhm‐d‐12‐0149.1 – ident: e_1_2_9_24_1 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_9_9_1 doi: 10.1029/2020wr029001 – ident: e_1_2_9_41_1 doi: 10.1029/2022WR032064 – ident: e_1_2_9_26_1 doi: 10.3390/rs12030428 – ident: e_1_2_9_42_1 doi: 10.1002/2017wr020401 – ident: e_1_2_9_58_1 doi: 10.1016/j.jhydrol.2023.129944 – year: 2015 ident: e_1_2_9_47_1 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv preprint arXiv:1511.06434 – year: 2013 ident: e_1_2_9_30_1 article-title: Auto‐encoding variational bayes publication-title: arXiv preprint arXiv:1312.6114 – volume: 27 start-page: 2672 year: 2014 ident: e_1_2_9_17_1 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_57_1 doi: 10.1029/2020WR028740 – ident: e_1_2_9_11_1 doi: 10.1016/j.advwatres.2020.103667 – ident: e_1_2_9_21_1 doi: 10.5194/gmd‐11‐3481‐2018 – ident: e_1_2_9_29_1 – ident: e_1_2_9_44_1 doi: 10.1029/2021ms002509 |
SSID | ssj0014567 |
Score | 2.4756517 |
Snippet | Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous... Abstract Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ablation Artificial neural networks basins Bias Calibration China Compression deep learning Discriminators distributed parameters Evapotranspiration Evapotranspiration models generative adversarial network Generative adversarial networks Hydrologic models Hydrologic networks Infiltration capacity land surface hydrologic models Machine learning model validation Neural networks Objective function Parameter identification Parameter uncertainty Parameters Spatial discrimination learning water |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQPdBL1RdqWlq5UjmVqE7iV46UFq2qgtACglvkJxxQttqwB_49M443Wg6t1FsUj6PE9tjfZGa-IeSL8K0KXrtSV8KWvPa21LYOJeik5Vw0LqQs15NTObvkv67Fdf7hhrkwIz_E9MMNNSPt16jgxg6ZbAA5MsFq51dzhsw8YLI_w-xa5M6v-dnkRQBwoNYeZkQ6OfAd-n_b7P3kSErM_U_g5iZoTafO8UvyIsNFejjO7yuyFfrXZGedTTzAda5ifvvwhtxmstQb-gPpcLGSVfD0zGD8FZJo0kWkv03v6flqGY0LdPbgl-PmR7Em2t1AUwQBNXRko8atkKaSzYPBhUpPx6Dxt-Ty-OfF0azMlRRKA4POSu6NbryygJWqNgjlXcO8aeF0F6yJlitlopIy-siVdKryFqygyEMU6HwBe3uXbPeLPrwj1OsqaHiqrJzkLBpTi2C499ZI7YwVBfm6HszOZZpxrHZx1yV3d912m0NfkP1J-s9Ir_EXue84L5MMkmKnG4vlTZd1rFMNLC4OnyK95zpwA7ajS5m1zGr46oLsrWe1y5o6dA1gTsy3ZW1BPk_NoGPoODF9WKxABo4FxZRseUEO0mr458t2V_OjOcBCxd7_n_gH8hwbxmjgPbJ9v1yFj4B57u2ntLAfAeu49sA priority: 102 providerName: Wiley-Blackwell |
Title | Learning Distributed Parameters of Land Surface Hydrologic Models Using a Generative Adversarial Network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037380 https://www.proquest.com/docview/3085647809 https://www.proquest.com/docview/3153707694 https://doaj.org/article/7345347af6dd48e4a401c011810b8e57 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoF3qpWmjVtBS5Ej2VqE7iV44tBa0qQGgLglvkJxxQttplD_z7zjjOajm0XLhFycSyxmP7G83MN4TsC9-q4LUrdSVsyWtvS23rUMKetJyLxoVU5Xp6JieX_Ne1uF5r9YU5YQM98KC4b6qBP7gyUXrPdeAGHAKXyiWZ1UGkOnK480ZnKscPABaoMbaMGCenvLO6RW-fX00ZMvqwR5dR4ux_BDTX4Wq6b45fk1cZKNLvwwTfkI3Qb5OtsY54Ac-5f_ntww65zTSpN_QnEuFiD6vg6bnBzCukz6SzSE9M7-nv5TwaF-jkwc-HY49iN7S7BU25A9TQgYcaD0GamjUvDJooPRvSxd-Sy-Oji8NJmXsolAbUzUrujW68soCSqhbU5V3DvGlBfYI10XIFmlVSRh-5kk5V3oL_E3mIAsMu4Gm_I5v9rA_vCfW6ChpGlZWTnEVjahEM994aqZ2xoiBfR2V2LhOMY5-Luy4Fuuu2W1d9Qb6spP8MxBr_kPuB67KSQTrs9AKMpMtG0j1lJAXZHVe1y3t00TWANrHSlrUF-bz6DLsLQyamD7MlyMCFoJiSLS_IQbKG_062u5oeTgEQKvbhOab9kbzE0Yfs4F2yeT9fhk-Age7tHnlR8_O9ZPR_ASNm_j8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOZQL4ilSChgJThCRh185QqFaYLuqllbtzfKzPVTZard76L_vjOONtgeQuEXJJIofY3_jmfmGkA_cdzJ45UpVc1uyxttS2SaUoJOWMd66kLJcj2Zicsp-nfPzXOcUc2EGfojxwA01I63XqOB4IJ3ZBpAkE8x2djavkJoHbPaHTDQSNbNhx6MbAdCB3LiYEerkyHd4_8v22_f2pETdfw9vbqPWtO0cPiGPM16kX4cBfkoehP4Z2d2kE6_gOpcxv7x9Ti4zW-oF_Y58uFjKKnh6bDAAC1k06SLSqek9_bNeRuMCndz65bD6USyKdrWiKYSAGjrQUeNaSFPN5pXBmUpnQ9T4C3J6-OPkYFLmUgqlgV6vSuaNar20AJbqLnDpXVt508H2zqs2WialiVKI6COTwsnaWzCDIguRo_cFDO6XZKdf9OEVoV7VQcFXRe0Eq6IxDQ-GeW-NUM5YXpBPm87ULvOMY7mLK5383U2nt7u-IB9H6euBX-Mvct9wXEYZZMVONxbLC52VTMsWZheDpgjvmQrMgPHoUmptZRW0uiD7m1HVWVVXugXQiQm3VVeQ9-NjUDL0nJg-LNYgA_uCrKToWEE-p9nwz5_VZ_ODOeBCWe39n_g7sjs5OZrq6c_Z79fkEQoNocH7ZOdmuQ5vAADd2Ldpkt8BR0n6LA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkYAL4ilSWjASnCDC2Ti2c6SP1QJltVqo2pvlZ3uostVu99B_z4zjjbaHInGLkkkUP8b-xjPzDSEfG9_K4JUrVdXYko-8LZUdhRJ00nLe1C6kLNdfUzE55T_Om_N84Ia5MD0_xHDghpqR1mtU8GsfM9kAcmSC1c7P5gyZecBkf5j8fcjszGeDFwHAgdx4mBHp5MB3eP_r9tt3tqTE3H8Hbm6D1rTrjJ-Rpxku0m_9-D4nD0L3gjzeZBOv4DpXMb-8fUkuM1nqBT1COlysZBU8nRmMv0ISTbqI9MR0nv5eL6NxgU5u_bJf_CjWRLta0RRBQA3t2ahxKaSpZPPK4ESl0z5o_BU5HR__OZyUuZJCaaDTWcm9UbWXFrBS1YZGelczb1rY3RtWR8ulNFEKEX3kUjhZeQtWUOQhNuh8AXv7NdnpFl14Q6hXVVDwVVE5wVk0ZtQEw723RihnbFOQz5vO1C7TjGO1iyud3N2jVm93fUE-DdLXPb3GPXIHOC6DDJJipxuL5YXOOqZlDZOLQ1OE91wFbsB2dCmzllkFrS7I3mZUddbUla4Bc2K-LWsL8mF4DDqGjhPThcUaZGBbkEyKlhfkS5oN__xZfTY_nAMslGz3_8Tfk0ezo7E--T79-ZY8QZk-MHiP7Nws12Ef4M-NfZfm-F_QFvle |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Distributed+Parameters+of+Land+Surface+Hydrologic+Models+Using+a+Generative+Adversarial+Network&rft.jtitle=Water+resources+research&rft.au=Sun%2C+Ruochen&rft.au=Pan%2C+Baoxiang&rft.au=Duan%2C+Qingyun&rft.date=2024-07-01&rft.issn=0043-1397&rft.volume=60&rft.issue=7+p.e2024WR037380-&rft_id=info:doi/10.1029%2F2024WR037380&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |