Learning Distributed Parameters of Land Surface Hydrologic Models Using a Generative Adversarial Network

Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstandin...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 60; no. 7
Main Authors Sun, Ruochen, Pan, Baoxiang, Duan, Qingyun
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.07.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Land surface hydrologic models adeptly capture crucial terrestrial processes with a high level of spatial detail. Typically, these models incorporate numerous uncertain, spatially varying parameters, the specification of which can profoundly impact the simulation capabilities. There is a longstanding tradition wherein parameter calibration has served as the conventional procedure to enhance model performance. However, calibrating distributed land surface hydrologic models presents a great challenge, often resulting in uneven spatial performance due to the compression of information inherent in model outputs and observations into a single‐value objective function. To address this problem, we propose a novel Generative Adversarial Network‐based Parameter Optimization (GAN‐PO) method. By leveraging a deep neural network to discern model spatial biases, we train a generative network to produce spatially coherent parameter fields, minimizing distinctions between simulations and observations. By leveraging neural network‐based surrogate models to make the physical model differentiable, we employ GAN‐PO to calibrate the Variable Infiltration Capacity (VIC) model against evapotranspiration (ET) over China's Huaihe basin. The results show that GAN‐PO can diminish errors in simulated ET derived from default parameters across nearly all grid cells within the study region, surpassing the conventional calibration approach based on the parameter regionalization technique. Ablation analysis indicates that relying solely on the traditional loss could lead to deteriorated model performance, underscoring the crucial role of the discriminator. Notably, due to the discriminator's explicit identification of model spatial biases, GAN‐PO excels in maintaining spatial consistency, outperforming the state‐of‐the‐art differentiable parameter learning (dPL) method in terms of model spatial performance. Key Points A novel generative adversarial network‐based parameter estimation method is proposed to calibrate distributed land surface hydrologic models By employing a discriminator to identify model spatial biases, this method contributes to effective and spatially coherent parameter estimation This method can substantially reduce model simulated errors at grid scale and achieve consistent spatial performance
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0043-1397
1944-7973
DOI:10.1029/2024WR037380