Subzero Temperature Dip-Coating of Sol-Gel Vanadium Pentoxide: Effect of the Deposition Temperature on the Film Structure, Morphology, and Electrochromic Properties

Vanadium pentoxide sol-gel prepared thin films were deposited on indium-tin-oxide (ITO) substrates by dip-coating at a subzero temperature (−10°C). The structure, morphology, and optical and electrochromic properties of dense and porous vanadium oxide films coated at low temperature were determined...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanomaterials Vol. 2016; no. 2016; pp. 1 - 10
Main Authors Truong, Vo-Van, Sharma, Tanu, Stancovski, Victor, Badilescu, Simona, Alsawafta, Mohammed, Almoabadi, Afaf, Brüning, Ralf
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vanadium pentoxide sol-gel prepared thin films were deposited on indium-tin-oxide (ITO) substrates by dip-coating at a subzero temperature (−10°C). The structure, morphology, and optical and electrochromic properties of dense and porous vanadium oxide films coated at low temperature were determined and compared to those of the corresponding films deposited under room-temperature conditions. The results indicated that, in the films coated at −10°C, a residual compressive stress exists that would originate from the formation of microvoids during the deposition. These microvoids are preserved during the heat treatment of the films. The microvoid morphology would favor the formation of nanostructures that would be responsible for the improved electrochromic properties of the subzero dip-coated films. Low-temperature coated films, heated at 450°C for several hours, undergo the transformation from a layered to a highly uniform nanorod structure that would be an important feature for different applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-4110
1687-4129
DOI:10.1155/2016/4595869