Distribution of PAHs in the water column, sediments and biota of Potter Cove, South Shetland Islands, Antarctica

In order to establish the environmental status of areas close to Antarctic stations it is necessary to document levels of contaminants present in these sites. Several petrogenic and pyrogenic sources have been reported for polycyclic aromatic hydrocarbons (PAHs) in Antarctica. In this work, levels o...

Full description

Saved in:
Bibliographic Details
Published inAntarctic science Vol. 21; no. 4; pp. 329 - 339
Main Authors Curtosi, Antonio, Pelletier, Emilien, Vodopivez, Cristian L., Mac Cormack, Walter P.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.08.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to establish the environmental status of areas close to Antarctic stations it is necessary to document levels of contaminants present in these sites. Several petrogenic and pyrogenic sources have been reported for polycyclic aromatic hydrocarbons (PAHs) in Antarctica. In this work, levels of 25 PAHs were measured in suspended particulate matter (SPM), surface sediment and marine organisms (fish Notothenia coriiceps, bivalve Laternula elliptica and gastropod Nacella concinna) from Potter Cove. Total PAH levels from SPM were low and similar in all sites studied (30–82 ng g-1 dw), phenanthrene being the dominant compound (68–84%). The exception was an area close to the wharf where significantly higher values of light PAHs such as naphthalene, acenaphthylene, 2,3,5-trimethylnaphthalene and fluorene were detected, indicating the influence of recent fuel spills. PAH concentrations in surface sediments were generally low (37–252 ng g-1 dw) except for two sites (1762 and 1908 ng g-1 dw) which suggested an accumulation process associated with the water circulation pattern. Liver tissue of N coriiceps presented significantly higher PAH levels (257 ng g-1 dw) compared with gonads. The pattern of individual compounds from substrates and organisms suggests a petrogenic and low-temperature combustion origin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0954-1020
1365-2079
DOI:10.1017/S0954102009002004