Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis

The Kemp elimination (reaction of benz­isox­azole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benz­isox­azole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions aro...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 8; pp. 2821 - 2828
Main Authors Cullen, William, Metherell, Alexander J, Wragg, Ashley B, Taylor, Christopher G. P, Williams, Nicholas H, Ward, Michael D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2018
Online AccessGet full text

Cover

Loading…
Abstract The Kemp elimination (reaction of benz­isox­azole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benz­isox­azole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benz­isox­azole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface.
AbstractList The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benzisoxazole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface.
The Kemp elimination (reaction of benz­isox­azole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benz­isox­azole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benz­isox­azole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface.
The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M L coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benzisoxazole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface.
Author Wragg, Ashley B
Williams, Nicholas H
Metherell, Alexander J
Taylor, Christopher G. P
Cullen, William
Ward, Michael D
AuthorAffiliation Department of Chemistry
University of Sheffield
AuthorAffiliation_xml – name: Department of Chemistry
– name: University of Sheffield
Author_xml – sequence: 1
  givenname: William
  surname: Cullen
  fullname: Cullen, William
  organization: University of Sheffield
– sequence: 2
  givenname: Alexander J
  surname: Metherell
  fullname: Metherell, Alexander J
  organization: University of Sheffield
– sequence: 3
  givenname: Ashley B
  surname: Wragg
  fullname: Wragg, Ashley B
  organization: University of Sheffield
– sequence: 4
  givenname: Christopher G. P
  surname: Taylor
  fullname: Taylor, Christopher G. P
  organization: Department of Chemistry
– sequence: 5
  givenname: Nicholas H
  orcidid: 0000-0002-4457-4220
  surname: Williams
  fullname: Williams, Nicholas H
  email: n.h.williams@sheffield.ac.uk
  organization: University of Sheffield
– sequence: 6
  givenname: Michael D
  orcidid: 0000-0001-8175-8822
  surname: Ward
  fullname: Ward, Michael D
  email: m.d.ward@warwick.ac.uk
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29412665$$D View this record in MEDLINE/PubMed
BookMark eNptUD1PwzAUtFAR_YCNGXlkaIrtJLbDFioolSoxQOfIcZziKrVLnFTqP-Bn4_QDFia_O93de74h6BlrFAC3GE0wIvhhLaSbsBzjMIwuwADHBAUxJrQHBgghEjBOwz4YOrf2MCIcX4E-SSKvoPEAfE9FI6q90w5qAwX0UFujJZxaWxfaHKBnVwounTarg2Snm33wZFtTwFmrXAOFn97buhRSnfjUeJ97hHPzqXPdhYxhKhu9E8e5c6RtY-V5_TW4LEXl1M3pHYHly_PH9DVYvM3m03QRiIjGTVByyUpKEIolzWVeoBiHVCaoFIIjVgrKchRxwVgZk0QkKOE5Vp7jHBWUkSgcgftj7ra2X93x2UY7qapKGGVbl-EkSSgniHEvHR-lsrbO1arMtrXeiHqfYZR13Wdd99mpey-_OyW3-UYVv-Jz2X-rO9fatrXxH_0_6wc3iY8R
CitedBy_id crossref_primary_10_1002_anie_202409094
crossref_primary_10_1039_C9CC05002G
crossref_primary_10_1002_ange_201903286
crossref_primary_10_1021_jacs_1c06121
crossref_primary_10_1039_C9CY01894H
crossref_primary_10_1039_D0CC08098E
crossref_primary_10_1021_acs_chemrev_0c00672
crossref_primary_10_1039_D3DT01073B
crossref_primary_10_1002_ange_202212392
crossref_primary_10_3390_chemistry2020031
crossref_primary_10_1039_D1SC04887B
crossref_primary_10_3390_molecules28104068
crossref_primary_10_1021_jacs_3c01409
crossref_primary_10_1021_acs_accounts_8b00261
crossref_primary_10_1002_ange_202301319
crossref_primary_10_1021_jacs_9b05432
crossref_primary_10_1002_anie_201916722
crossref_primary_10_1016_j_cclet_2019_09_034
crossref_primary_10_1002_anie_202117011
crossref_primary_10_1039_C9CS00091G
crossref_primary_10_1002_cplu_202000408
crossref_primary_10_1016_j_cej_2018_09_124
crossref_primary_10_1021_acs_inorgchem_8b02860
crossref_primary_10_1021_acs_joc_9b01166
crossref_primary_10_1039_C9SC02412C
crossref_primary_10_1039_D3DT00689A
crossref_primary_10_1039_D2QI02223K
crossref_primary_10_1002_chem_202101548
crossref_primary_10_1039_D0QO00681E
crossref_primary_10_1002_ange_202311255
crossref_primary_10_1002_chem_202302499
crossref_primary_10_1021_acs_joc_0c02792
crossref_primary_10_1021_acs_chemrev_0c00522
crossref_primary_10_1038_s41929_020_00528_3
crossref_primary_10_1039_D3CC05935A
crossref_primary_10_1002_advs_202308388
crossref_primary_10_1021_acs_chemrev_1c00811
crossref_primary_10_1039_D1SC04272F
crossref_primary_10_1039_D1SC00896J
crossref_primary_10_3390_chemistry2010004
crossref_primary_10_1002_chem_202400501
crossref_primary_10_1016_j_ccr_2020_213648
crossref_primary_10_1021_jacs_8b11788
crossref_primary_10_1021_jacs_9b11099
crossref_primary_10_1002_anie_202212634
crossref_primary_10_1021_acs_inorgchem_8b01157
crossref_primary_10_1002_chem_201902049
crossref_primary_10_1002_chem_201905499
crossref_primary_10_1021_jacs_2c07586
crossref_primary_10_1021_jacs_2c02692
crossref_primary_10_1039_D2SC03093D
crossref_primary_10_1021_acs_jpcb_0c02599
crossref_primary_10_1002_anie_202301319
crossref_primary_10_1002_anie_202000681
crossref_primary_10_1002_ange_201916722
crossref_primary_10_1002_ange_202212634
crossref_primary_10_3390_chemistry4020036
crossref_primary_10_1002_ange_202117011
crossref_primary_10_1002_ange_201806297
crossref_primary_10_1039_C8CC07208F
crossref_primary_10_1002_ange_202409094
crossref_primary_10_1039_D1CS00175B
crossref_primary_10_1021_acsomega_9b01344
crossref_primary_10_1002_anie_202311255
crossref_primary_10_1021_jacs_9b05351
crossref_primary_10_1021_jacs_9b10302
crossref_primary_10_1016_j_saa_2022_121346
crossref_primary_10_1021_acsanm_9b01294
crossref_primary_10_1039_C9SC05728E
crossref_primary_10_1039_D2CC00532H
crossref_primary_10_1070_RCR5011
crossref_primary_10_1021_acs_joc_9b01880
crossref_primary_10_1021_jacs_8b03984
crossref_primary_10_1021_acsabm_3c00885
crossref_primary_10_1039_C9CC03871J
crossref_primary_10_1039_D3DT01706K
crossref_primary_10_1002_anie_202212392
crossref_primary_10_1039_D3DT01378B
crossref_primary_10_1021_acs_jpclett_8b03485
crossref_primary_10_1021_jacs_0c08835
crossref_primary_10_1038_s41570_019_0085_3
crossref_primary_10_1038_s41557_023_01387_8
crossref_primary_10_1021_acs_inorgchem_2c01608
crossref_primary_10_1039_D0SC00341G
crossref_primary_10_1038_s41467_020_16714_7
crossref_primary_10_1038_s41565_020_0652_2
crossref_primary_10_1002_cctc_202001570
crossref_primary_10_1021_acs_joc_1c01511
crossref_primary_10_1039_D1CC04860K
crossref_primary_10_1021_acs_inorgchem_8b03388
crossref_primary_10_1246_bcsj_20210273
crossref_primary_10_1002_ejic_202300110
crossref_primary_10_1039_D2DT01713J
crossref_primary_10_1039_D0DT04211K
crossref_primary_10_1002_anie_201903286
crossref_primary_10_1039_D2DT02623F
crossref_primary_10_1002_chem_201904708
crossref_primary_10_1021_acsnano_2c10856
crossref_primary_10_1002_anie_201806297
crossref_primary_10_1002_chem_202203588
crossref_primary_10_1002_ange_202000681
crossref_primary_10_1021_acs_joc_9b01377
Cites_doi 10.1016/j.ccr.2015.05.016
10.1039/c1cc14523a
10.1039/c3sc50546d
10.1002/anie.200804223
10.1021/acs.organomet.5b00555
10.1021/ar300038r
10.1039/b906726b
10.1016/j.ccr.2016.09.010
10.1021/ic302498t
10.1021/jo00953a006
10.1021/jp903292n
10.1021/jacs.5b00832
10.1021/ja00023a036
10.1073/pnas.0912769107
10.1021/ic060157d
10.1021/jacs.5b06317
10.1002/asia.201101005
10.1039/c2cc17369g
10.1002/anie.201310958
10.1021/ja00099a003
10.1021/ja065894n
10.1039/C4CS00165F
10.1038/nchem.1407
10.1021/cr3002824
10.1126/science.1124985
10.1039/C3CS60473J
10.1021/ja8089075
10.1021/jacs.5b01261
10.1021/ja00801a024
10.1002/anie.201303822
10.1021/cr4001226
10.1039/C2CS35123D
10.1021/ja052108q
10.1021/jacs.6b03372
10.1039/C5SC00534E
10.1021/ja805605y
10.1002/chem.201604796
10.1246/cl.160852
10.1021/ja509761a
10.1002/anie.200501527
10.1002/anie.199618381
10.1039/C2SC00899H
10.1002/chem.201301348
10.1021/ol015540v
10.1246/cl.160834
10.1021/ar900118t
10.1021/ja00024a089
10.1002/chem.201704163
10.1038/nchem.2452
10.1039/C3CS60371G
10.1021/jo802131v
10.1021/ja102633e
10.1021/jz402072g
10.1002/ejoc.200800827
10.1039/C4SC02090A
10.1021/ja504269m
10.1002/anie.200805340
10.1021/cr200345v
10.1007/978-3-642-78110-0_4
10.1016/j.ccr.2014.03.037
10.1038/385050a0
10.1126/science.1138748
10.1021/cr200077m
10.1021/ol051179r
10.1039/FT9918702995
10.1039/C2CS35254K
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/jacs.7b11334
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 2828
ExternalDocumentID 10_1021_jacs_7b11334
29412665
a970463413
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
IH2
NPM
XSW
YQT
ZCA
~02
AAYXX
ADOJD
CITATION
7X8
ID FETCH-LOGICAL-a465t-f8c7f62005c6bcbd05136c90faa807fa67b048a77f529a9098b1e7b0880d67243
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Wed Dec 04 00:13:34 EST 2024
Fri Dec 06 04:14:14 EST 2024
Wed Oct 16 01:00:57 EDT 2024
Thu Aug 27 13:42:35 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a465t-f8c7f62005c6bcbd05136c90faa807fa67b048a77f529a9098b1e7b0880d67243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4457-4220
0000-0001-8175-8822
OpenAccessLink https://doi.org/10.1021/jacs.7b11334
PMID 29412665
PQID 1999682078
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1999682078
crossref_primary_10_1021_jacs_7b11334
pubmed_primary_29412665
acs_journals_10_1021_jacs_7b11334
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-02-28
PublicationDateYYYYMMDD 2018-02-28
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref1/cit1i
ref9/cit9
ref1/cit1h
ref1/cit1k
ref1/cit1j
ref27/cit27
ref1/cit1e
ref1/cit1d
ref1/cit1g
ref1/cit1f
ref23/cit23a
ref23/cit23b
ref16/cit16
ref1/cit1m
ref1/cit1l
ref12/cit12b
ref12/cit12a
ref8/cit8
ref2/cit2
ref1/cit1a
ref1/cit1c
ref1/cit1b
ref5/cit5b
ref17/cit17
ref26/cit26b
ref5/cit5c
ref26/cit26c
ref26/cit26d
ref5/cit5a
ref19/cit19
ref21/cit21
ref3/cit3b
ref22/cit22a
ref3/cit3c
ref3/cit3a
ref26/cit26a
ref3/cit3d
ref22/cit22c
ref13/cit13
ref22/cit22b
ref6/cit6
ref18/cit18
ref11/cit11
ref25/cit25b
ref10/cit10a
ref25/cit25c
ref10/cit10b
ref25/cit25a
ref18/cit18b
ref4/cit4a
ref4/cit4b
ref4/cit4c
ref14/cit14a
ref24/cit24c
ref24/cit24b
ref14/cit14c
ref14/cit14b
ref15/cit15
ref24/cit24d
ref24/cit24a
ref20/cit20a
ref20/cit20b
ref4/cit4d
ref4/cit4e
ref4/cit4f
ref4/cit4g
ref7/cit7
References_xml – ident: ref1/cit1g
  doi: 10.1016/j.ccr.2015.05.016
– ident: ref4/cit4c
  doi: 10.1039/c1cc14523a
– ident: ref15/cit15
  doi: 10.1039/c3sc50546d
– ident: ref26/cit26c
  doi: 10.1002/anie.200804223
– ident: ref3/cit3a
  doi: 10.1021/acs.organomet.5b00555
– ident: ref5/cit5b
  doi: 10.1021/ar300038r
– ident: ref19/cit19
  doi: 10.1039/b906726b
– ident: ref1/cit1b
  doi: 10.1016/j.ccr.2016.09.010
– ident: ref18/cit18b
  doi: 10.1021/ic302498t
– ident: ref12/cit12a
  doi: 10.1021/jo00953a006
– ident: ref17/cit17
  doi: 10.1021/jp903292n
– ident: ref4/cit4e
  doi: 10.1021/jacs.5b00832
– ident: ref24/cit24a
  doi: 10.1021/ja00023a036
– ident: ref24/cit24d
  doi: 10.1073/pnas.0912769107
– ident: ref22/cit22c
  doi: 10.1021/ic060157d
– ident: ref4/cit4f
  doi: 10.1021/jacs.5b06317
– ident: ref4/cit4b
  doi: 10.1002/asia.201101005
– ident: ref18/cit18
  doi: 10.1039/c2cc17369g
– ident: ref20/cit20a
  doi: 10.1002/anie.201310958
– ident: ref24/cit24c
  doi: 10.1021/ja00099a003
– ident: ref25/cit25b
  doi: 10.1021/ja065894n
– ident: ref1/cit1f
  doi: 10.1039/C4CS00165F
– ident: ref22/cit22b
  doi: 10.1038/nchem.1407
– ident: ref1/cit1c
  doi: 10.1021/cr3002824
– ident: ref7/cit7
  doi: 10.1126/science.1124985
– ident: ref1/cit1j
  doi: 10.1039/C3CS60473J
– ident: ref4/cit4a
  doi: 10.1021/ja8089075
– ident: ref8/cit8
  doi: 10.1021/jacs.5b01261
– ident: ref12/cit12b
  doi: 10.1021/ja00801a024
– ident: ref23/cit23a
  doi: 10.1002/anie.201303822
– ident: ref5/cit5a
  doi: 10.1021/cr4001226
– ident: ref2/cit2
  doi: 10.1039/C2CS35123D
– ident: ref22/cit22a
  doi: 10.1021/ja052108q
– ident: ref26/cit26d
  doi: 10.1021/jacs.6b03372
– ident: ref14/cit14b
  doi: 10.1039/C5SC00534E
– ident: ref16/cit16
  doi: 10.1021/ja805605y
– ident: ref14/cit14c
  doi: 10.1002/chem.201604796
– ident: ref1/cit1l
  doi: 10.1246/cl.160852
– ident: ref4/cit4d
  doi: 10.1021/ja509761a
– ident: ref25/cit25c
  doi: 10.1002/anie.200501527
– ident: ref21/cit21
  doi: 10.1002/anie.199618381
– ident: ref3/cit3c
  doi: 10.1039/C2SC00899H
– ident: ref3/cit3b
  doi: 10.1002/chem.201301348
– ident: ref26/cit26a
  doi: 10.1021/ol015540v
– ident: ref1/cit1m
  doi: 10.1246/cl.160834
– ident: ref1/cit1d
  doi: 10.1021/ar900118t
– ident: ref24/cit24b
  doi: 10.1021/ja00024a089
– ident: ref20/cit20b
  doi: 10.1002/chem.201704163
– ident: ref11/cit11
  doi: 10.1038/nchem.2452
– ident: ref1/cit1i
  doi: 10.1039/C3CS60371G
– ident: ref10/cit10a
  doi: 10.1021/jo802131v
– ident: ref9/cit9
  doi: 10.1021/ja102633e
– ident: ref27/cit27
  doi: 10.1021/jz402072g
– ident: ref23/cit23b
  doi: 10.1002/ejoc.200800827
– ident: ref3/cit3d
  doi: 10.1039/C4SC02090A
– ident: ref14/cit14a
  doi: 10.1021/ja504269m
– ident: ref5/cit5c
  doi: 10.1002/anie.200805340
– ident: ref1/cit1k
  doi: 10.1021/cr200345v
– ident: ref4/cit4g
– ident: ref25/cit25a
  doi: 10.1007/978-3-642-78110-0_4
– ident: ref1/cit1h
  doi: 10.1016/j.ccr.2014.03.037
– ident: ref6/cit6
  doi: 10.1038/385050a0
– ident: ref10/cit10b
  doi: 10.1126/science.1138748
– ident: ref1/cit1a
  doi: 10.1021/cr200077m
– ident: ref26/cit26b
  doi: 10.1021/ol051179r
– ident: ref13/cit13
  doi: 10.1039/FT9918702995
– ident: ref1/cit1e
  doi: 10.1039/C2CS35254K
SSID ssj0004281
Score 2.5973907
Snippet The Kemp elimination (reaction of benz­isox­azole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of...
The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M L coordination cage because of a...
The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2821
Title Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis
URI http://dx.doi.org/10.1021/jacs.7b11334
https://www.ncbi.nlm.nih.gov/pubmed/29412665
https://search.proquest.com/docview/1999682078
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNrgS3pmocx3a4lYi2IMGlVOqtsh0HKqQUtcmFL-CzGWehoqiCWzSyncQztt-MZ0HoikjFYkYjh2keOdSTnhMI3XYiGigFGnQ7EDZQ-PGJ9Yf0YeSPFg6yyzf4xOYH0vMWVy4oU3QdbRAOmreFQOFgEf9IhFvBXC6YVzq4L_e2B5Ce_zyAVqDK_HTp7qBeFaNTOJW8tbJUtfTH75SNf3z4LtouASbuFBKxh9ZMso82w6qu2wH6DK3FxiYiwZMESxwWNlmNwykoopPCOgjUF4Nzf4K8ia0w4dzaEky4Z38ES3gaZLNYalPSO4mV4Bt8n7xOVO4I1sQdXVVPa-Y9Olk61dXrD9Gwe_cc9p2yHoMjKfNTJxaax8yaoTRTWkWwnj2mg3YspWjzWDKuYD-QnMc-CWQAbFauARpsERHjhHpHqJZME3OCsE8jIZimRFEQFGOsYMBRKXXgC-35bh01YPbG5Xqaj_OrcgKqiqWWc1pH1xUjx-9Fao4V7RoVl8cw1fZCRCZmmsGoVtsDCMRFHR0X7P8eiQTUBfDin_7jS87QFuAoUUS6n6NaOsvMBWCVVF3mgvoF5Wjidg
link.rule.ids 314,780,784,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALpZTHUgpGam8EbRLHdnrbRtDltRdA4hbZjkNXlbJoN7nwC_jZnXESUJGQuEWj2HHsseeb8TwAvkfaiFLwIhBWFgGPdRykyg6DgqfGoAY9TBUFCl9NxPiWn98ld12wOsXC4CAW2NPCX-K_ZBegNEFIlCZEnYovwceEqlUSEsquX8IgIxX2aFcqEXd-7q9bkxyyi__l0Bvg0guZ008weR6e9y35e9zU5tg-vsrc-O7xr8NaBzfZqOWPz_DBVRuwkvVV3r7AU0b2G0pLwqYV0yxrLbSWZTNUS6etrRCp94557wL_CtWbCH5RQSb2m_6HaXy6bualtq6jjyri55_srPozNd4t7IiNbF9L7ci3GDX1zPaf34Tb05ObbBx01RkCzUVSB6WyshRklLLCWFPg7o6FTYel1mooSy2kwdNBS1kmUapTXHQTOqThgVEIGfF4C5arWeV2gCW8UEpYHhmObOMcsQkKTm3TRNk4CQdwiLOXd7trkfuL8wgVF6J2czqAH_165g9too433jvsFzvHqabrEV25WYO9ku6HgEiqAWy3XPDcU5TyEKFMsvuOkRzAyvjm6jK_PJtcfIVVRFiqjYHfg-V63rhviGJqs-959x_Vp-rj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3bbtMw9Kgr0rYXYLBBuWyuBG_L1CSO7fAWAl0LrEJsk_YW2Y7DKqS0apMXvoDP5thJiqg0aXuLTnz3sc_F5wLwLpCKFYzmHtM892goQy8WeuTlNFYKJehRLKyj8MWMTa7pl5vopgd-5wuDg1hjS2v3iG9P9TIv2ggDNlQQ_uDKR7mK7sCjCC9aa8WVpJf_XCED4XccLxcsbG3dt2tbWqTX_9OiOxhMR2jGT-DHZojOvuTXWV2pM_17K3rjg-bwFB63bCdJGjw5gJ4pn8Fe2mV7ew5_UqvHseFJyLwkkqSNplaTdIHi6bzRGSL0pyHOysAVsXknvI82MRM5t3MiEr8u61UhtWnhSWnx-gOZlrdz5czDTkmiu5xqp65GUlcL3XV_CNfjz1fpxGuzNHiSsqjyCqF5waxySjOlVY6nPGQ6HhVSihEvJOMKbwnJeREFsYxx85VvEIYXR854QMMj6JeL0rwEEtFcCKZpoCiijzEWXZCASh1HQoeRP4Ahrl7WnrJ15h7QAxRgLLRd0wG87_Y0WzYBO-4oN-w2PMOlts8ksjSLGlu1MiAyRlwM4EWDCZuWgpj6yNJEr-4xkhPY_f5pnH2bzr6-hn1ktETjCv8G-tWqNm-RmanUsUPfv48-7WY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalysis+in+a+Cationic+Coordination+Cage+Using+a+Cavity-Bound+Guest+and+Surface-Bound+Anions%3A+Inhibition%2C+Activation%2C+and+Autocatalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Cullen%2C+William&rft.au=Metherell%2C+Alexander+J&rft.au=Wragg%2C+Ashley+B&rft.au=Taylor%2C+Christopher+G+P&rft.date=2018-02-28&rft.eissn=1520-5126&rft.volume=140&rft.issue=8&rft.spage=2821&rft_id=info:doi/10.1021%2Fjacs.7b11334&rft_id=info%3Apmid%2F29412665&rft.externalDocID=29412665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon