Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis
The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions aro...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 8; pp. 2821 - 2828 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.02.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benzisoxazole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface. |
---|---|
AbstractList | The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benzisoxazole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface. The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benzisoxazole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface. The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M L coordination cage because of a combination of (i) benzisoxazole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benzisoxazole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface. |
Author | Wragg, Ashley B Williams, Nicholas H Metherell, Alexander J Taylor, Christopher G. P Cullen, William Ward, Michael D |
AuthorAffiliation | Department of Chemistry University of Sheffield |
AuthorAffiliation_xml | – name: Department of Chemistry – name: University of Sheffield |
Author_xml | – sequence: 1 givenname: William surname: Cullen fullname: Cullen, William organization: University of Sheffield – sequence: 2 givenname: Alexander J surname: Metherell fullname: Metherell, Alexander J organization: University of Sheffield – sequence: 3 givenname: Ashley B surname: Wragg fullname: Wragg, Ashley B organization: University of Sheffield – sequence: 4 givenname: Christopher G. P surname: Taylor fullname: Taylor, Christopher G. P organization: Department of Chemistry – sequence: 5 givenname: Nicholas H orcidid: 0000-0002-4457-4220 surname: Williams fullname: Williams, Nicholas H email: n.h.williams@sheffield.ac.uk organization: University of Sheffield – sequence: 6 givenname: Michael D orcidid: 0000-0001-8175-8822 surname: Ward fullname: Ward, Michael D email: m.d.ward@warwick.ac.uk organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29412665$$D View this record in MEDLINE/PubMed |
BookMark | eNptUD1PwzAUtFAR_YCNGXlkaIrtJLbDFioolSoxQOfIcZziKrVLnFTqP-Bn4_QDFia_O93de74h6BlrFAC3GE0wIvhhLaSbsBzjMIwuwADHBAUxJrQHBgghEjBOwz4YOrf2MCIcX4E-SSKvoPEAfE9FI6q90w5qAwX0UFujJZxaWxfaHKBnVwounTarg2Snm33wZFtTwFmrXAOFn97buhRSnfjUeJ97hHPzqXPdhYxhKhu9E8e5c6RtY-V5_TW4LEXl1M3pHYHly_PH9DVYvM3m03QRiIjGTVByyUpKEIolzWVeoBiHVCaoFIIjVgrKchRxwVgZk0QkKOE5Vp7jHBWUkSgcgftj7ra2X93x2UY7qapKGGVbl-EkSSgniHEvHR-lsrbO1arMtrXeiHqfYZR13Wdd99mpey-_OyW3-UYVv-Jz2X-rO9fatrXxH_0_6wc3iY8R |
CitedBy_id | crossref_primary_10_1002_anie_202409094 crossref_primary_10_1039_C9CC05002G crossref_primary_10_1002_ange_201903286 crossref_primary_10_1021_jacs_1c06121 crossref_primary_10_1039_C9CY01894H crossref_primary_10_1039_D0CC08098E crossref_primary_10_1021_acs_chemrev_0c00672 crossref_primary_10_1039_D3DT01073B crossref_primary_10_1002_ange_202212392 crossref_primary_10_3390_chemistry2020031 crossref_primary_10_1039_D1SC04887B crossref_primary_10_3390_molecules28104068 crossref_primary_10_1021_jacs_3c01409 crossref_primary_10_1021_acs_accounts_8b00261 crossref_primary_10_1002_ange_202301319 crossref_primary_10_1021_jacs_9b05432 crossref_primary_10_1002_anie_201916722 crossref_primary_10_1016_j_cclet_2019_09_034 crossref_primary_10_1002_anie_202117011 crossref_primary_10_1039_C9CS00091G crossref_primary_10_1002_cplu_202000408 crossref_primary_10_1016_j_cej_2018_09_124 crossref_primary_10_1021_acs_inorgchem_8b02860 crossref_primary_10_1021_acs_joc_9b01166 crossref_primary_10_1039_C9SC02412C crossref_primary_10_1039_D3DT00689A crossref_primary_10_1039_D2QI02223K crossref_primary_10_1002_chem_202101548 crossref_primary_10_1039_D0QO00681E crossref_primary_10_1002_ange_202311255 crossref_primary_10_1002_chem_202302499 crossref_primary_10_1021_acs_joc_0c02792 crossref_primary_10_1021_acs_chemrev_0c00522 crossref_primary_10_1038_s41929_020_00528_3 crossref_primary_10_1039_D3CC05935A crossref_primary_10_1002_advs_202308388 crossref_primary_10_1021_acs_chemrev_1c00811 crossref_primary_10_1039_D1SC04272F crossref_primary_10_1039_D1SC00896J crossref_primary_10_3390_chemistry2010004 crossref_primary_10_1002_chem_202400501 crossref_primary_10_1016_j_ccr_2020_213648 crossref_primary_10_1021_jacs_8b11788 crossref_primary_10_1021_jacs_9b11099 crossref_primary_10_1002_anie_202212634 crossref_primary_10_1021_acs_inorgchem_8b01157 crossref_primary_10_1002_chem_201902049 crossref_primary_10_1002_chem_201905499 crossref_primary_10_1021_jacs_2c07586 crossref_primary_10_1021_jacs_2c02692 crossref_primary_10_1039_D2SC03093D crossref_primary_10_1021_acs_jpcb_0c02599 crossref_primary_10_1002_anie_202301319 crossref_primary_10_1002_anie_202000681 crossref_primary_10_1002_ange_201916722 crossref_primary_10_1002_ange_202212634 crossref_primary_10_3390_chemistry4020036 crossref_primary_10_1002_ange_202117011 crossref_primary_10_1002_ange_201806297 crossref_primary_10_1039_C8CC07208F crossref_primary_10_1002_ange_202409094 crossref_primary_10_1039_D1CS00175B crossref_primary_10_1021_acsomega_9b01344 crossref_primary_10_1002_anie_202311255 crossref_primary_10_1021_jacs_9b05351 crossref_primary_10_1021_jacs_9b10302 crossref_primary_10_1016_j_saa_2022_121346 crossref_primary_10_1021_acsanm_9b01294 crossref_primary_10_1039_C9SC05728E crossref_primary_10_1039_D2CC00532H crossref_primary_10_1070_RCR5011 crossref_primary_10_1021_acs_joc_9b01880 crossref_primary_10_1021_jacs_8b03984 crossref_primary_10_1021_acsabm_3c00885 crossref_primary_10_1039_C9CC03871J crossref_primary_10_1039_D3DT01706K crossref_primary_10_1002_anie_202212392 crossref_primary_10_1039_D3DT01378B crossref_primary_10_1021_acs_jpclett_8b03485 crossref_primary_10_1021_jacs_0c08835 crossref_primary_10_1038_s41570_019_0085_3 crossref_primary_10_1038_s41557_023_01387_8 crossref_primary_10_1021_acs_inorgchem_2c01608 crossref_primary_10_1039_D0SC00341G crossref_primary_10_1038_s41467_020_16714_7 crossref_primary_10_1038_s41565_020_0652_2 crossref_primary_10_1002_cctc_202001570 crossref_primary_10_1021_acs_joc_1c01511 crossref_primary_10_1039_D1CC04860K crossref_primary_10_1021_acs_inorgchem_8b03388 crossref_primary_10_1246_bcsj_20210273 crossref_primary_10_1002_ejic_202300110 crossref_primary_10_1039_D2DT01713J crossref_primary_10_1039_D0DT04211K crossref_primary_10_1002_anie_201903286 crossref_primary_10_1039_D2DT02623F crossref_primary_10_1002_chem_201904708 crossref_primary_10_1021_acsnano_2c10856 crossref_primary_10_1002_anie_201806297 crossref_primary_10_1002_chem_202203588 crossref_primary_10_1002_ange_202000681 crossref_primary_10_1021_acs_joc_9b01377 |
Cites_doi | 10.1016/j.ccr.2015.05.016 10.1039/c1cc14523a 10.1039/c3sc50546d 10.1002/anie.200804223 10.1021/acs.organomet.5b00555 10.1021/ar300038r 10.1039/b906726b 10.1016/j.ccr.2016.09.010 10.1021/ic302498t 10.1021/jo00953a006 10.1021/jp903292n 10.1021/jacs.5b00832 10.1021/ja00023a036 10.1073/pnas.0912769107 10.1021/ic060157d 10.1021/jacs.5b06317 10.1002/asia.201101005 10.1039/c2cc17369g 10.1002/anie.201310958 10.1021/ja00099a003 10.1021/ja065894n 10.1039/C4CS00165F 10.1038/nchem.1407 10.1021/cr3002824 10.1126/science.1124985 10.1039/C3CS60473J 10.1021/ja8089075 10.1021/jacs.5b01261 10.1021/ja00801a024 10.1002/anie.201303822 10.1021/cr4001226 10.1039/C2CS35123D 10.1021/ja052108q 10.1021/jacs.6b03372 10.1039/C5SC00534E 10.1021/ja805605y 10.1002/chem.201604796 10.1246/cl.160852 10.1021/ja509761a 10.1002/anie.200501527 10.1002/anie.199618381 10.1039/C2SC00899H 10.1002/chem.201301348 10.1021/ol015540v 10.1246/cl.160834 10.1021/ar900118t 10.1021/ja00024a089 10.1002/chem.201704163 10.1038/nchem.2452 10.1039/C3CS60371G 10.1021/jo802131v 10.1021/ja102633e 10.1021/jz402072g 10.1002/ejoc.200800827 10.1039/C4SC02090A 10.1021/ja504269m 10.1002/anie.200805340 10.1021/cr200345v 10.1007/978-3-642-78110-0_4 10.1016/j.ccr.2014.03.037 10.1038/385050a0 10.1126/science.1138748 10.1021/cr200077m 10.1021/ol051179r 10.1039/FT9918702995 10.1039/C2CS35254K |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/jacs.7b11334 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 2828 |
ExternalDocumentID | 10_1021_jacs_7b11334 29412665 a970463413 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH ABJNI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CUPRZ GGK IH2 NPM XSW YQT ZCA ~02 AAYXX ADOJD CITATION 7X8 |
ID | FETCH-LOGICAL-a465t-f8c7f62005c6bcbd05136c90faa807fa67b048a77f529a9098b1e7b0880d67243 |
IEDL.DBID | ACS |
ISSN | 0002-7863 |
IngestDate | Wed Dec 04 00:13:34 EST 2024 Fri Dec 06 04:14:14 EST 2024 Wed Oct 16 01:00:57 EDT 2024 Thu Aug 27 13:42:35 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a465t-f8c7f62005c6bcbd05136c90faa807fa67b048a77f529a9098b1e7b0880d67243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4457-4220 0000-0001-8175-8822 |
OpenAccessLink | https://doi.org/10.1021/jacs.7b11334 |
PMID | 29412665 |
PQID | 1999682078 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1999682078 crossref_primary_10_1021_jacs_7b11334 pubmed_primary_29412665 acs_journals_10_1021_jacs_7b11334 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-28 |
PublicationDateYYYYMMDD | 2018-02-28 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref1/cit1i ref9/cit9 ref1/cit1h ref1/cit1k ref1/cit1j ref27/cit27 ref1/cit1e ref1/cit1d ref1/cit1g ref1/cit1f ref23/cit23a ref23/cit23b ref16/cit16 ref1/cit1m ref1/cit1l ref12/cit12b ref12/cit12a ref8/cit8 ref2/cit2 ref1/cit1a ref1/cit1c ref1/cit1b ref5/cit5b ref17/cit17 ref26/cit26b ref5/cit5c ref26/cit26c ref26/cit26d ref5/cit5a ref19/cit19 ref21/cit21 ref3/cit3b ref22/cit22a ref3/cit3c ref3/cit3a ref26/cit26a ref3/cit3d ref22/cit22c ref13/cit13 ref22/cit22b ref6/cit6 ref18/cit18 ref11/cit11 ref25/cit25b ref10/cit10a ref25/cit25c ref10/cit10b ref25/cit25a ref18/cit18b ref4/cit4a ref4/cit4b ref4/cit4c ref14/cit14a ref24/cit24c ref24/cit24b ref14/cit14c ref14/cit14b ref15/cit15 ref24/cit24d ref24/cit24a ref20/cit20a ref20/cit20b ref4/cit4d ref4/cit4e ref4/cit4f ref4/cit4g ref7/cit7 |
References_xml | – ident: ref1/cit1g doi: 10.1016/j.ccr.2015.05.016 – ident: ref4/cit4c doi: 10.1039/c1cc14523a – ident: ref15/cit15 doi: 10.1039/c3sc50546d – ident: ref26/cit26c doi: 10.1002/anie.200804223 – ident: ref3/cit3a doi: 10.1021/acs.organomet.5b00555 – ident: ref5/cit5b doi: 10.1021/ar300038r – ident: ref19/cit19 doi: 10.1039/b906726b – ident: ref1/cit1b doi: 10.1016/j.ccr.2016.09.010 – ident: ref18/cit18b doi: 10.1021/ic302498t – ident: ref12/cit12a doi: 10.1021/jo00953a006 – ident: ref17/cit17 doi: 10.1021/jp903292n – ident: ref4/cit4e doi: 10.1021/jacs.5b00832 – ident: ref24/cit24a doi: 10.1021/ja00023a036 – ident: ref24/cit24d doi: 10.1073/pnas.0912769107 – ident: ref22/cit22c doi: 10.1021/ic060157d – ident: ref4/cit4f doi: 10.1021/jacs.5b06317 – ident: ref4/cit4b doi: 10.1002/asia.201101005 – ident: ref18/cit18 doi: 10.1039/c2cc17369g – ident: ref20/cit20a doi: 10.1002/anie.201310958 – ident: ref24/cit24c doi: 10.1021/ja00099a003 – ident: ref25/cit25b doi: 10.1021/ja065894n – ident: ref1/cit1f doi: 10.1039/C4CS00165F – ident: ref22/cit22b doi: 10.1038/nchem.1407 – ident: ref1/cit1c doi: 10.1021/cr3002824 – ident: ref7/cit7 doi: 10.1126/science.1124985 – ident: ref1/cit1j doi: 10.1039/C3CS60473J – ident: ref4/cit4a doi: 10.1021/ja8089075 – ident: ref8/cit8 doi: 10.1021/jacs.5b01261 – ident: ref12/cit12b doi: 10.1021/ja00801a024 – ident: ref23/cit23a doi: 10.1002/anie.201303822 – ident: ref5/cit5a doi: 10.1021/cr4001226 – ident: ref2/cit2 doi: 10.1039/C2CS35123D – ident: ref22/cit22a doi: 10.1021/ja052108q – ident: ref26/cit26d doi: 10.1021/jacs.6b03372 – ident: ref14/cit14b doi: 10.1039/C5SC00534E – ident: ref16/cit16 doi: 10.1021/ja805605y – ident: ref14/cit14c doi: 10.1002/chem.201604796 – ident: ref1/cit1l doi: 10.1246/cl.160852 – ident: ref4/cit4d doi: 10.1021/ja509761a – ident: ref25/cit25c doi: 10.1002/anie.200501527 – ident: ref21/cit21 doi: 10.1002/anie.199618381 – ident: ref3/cit3c doi: 10.1039/C2SC00899H – ident: ref3/cit3b doi: 10.1002/chem.201301348 – ident: ref26/cit26a doi: 10.1021/ol015540v – ident: ref1/cit1m doi: 10.1246/cl.160834 – ident: ref1/cit1d doi: 10.1021/ar900118t – ident: ref24/cit24b doi: 10.1021/ja00024a089 – ident: ref20/cit20b doi: 10.1002/chem.201704163 – ident: ref11/cit11 doi: 10.1038/nchem.2452 – ident: ref1/cit1i doi: 10.1039/C3CS60371G – ident: ref10/cit10a doi: 10.1021/jo802131v – ident: ref9/cit9 doi: 10.1021/ja102633e – ident: ref27/cit27 doi: 10.1021/jz402072g – ident: ref23/cit23b doi: 10.1002/ejoc.200800827 – ident: ref3/cit3d doi: 10.1039/C4SC02090A – ident: ref14/cit14a doi: 10.1021/ja504269m – ident: ref5/cit5c doi: 10.1002/anie.200805340 – ident: ref1/cit1k doi: 10.1021/cr200345v – ident: ref4/cit4g – ident: ref25/cit25a doi: 10.1007/978-3-642-78110-0_4 – ident: ref1/cit1h doi: 10.1016/j.ccr.2014.03.037 – ident: ref6/cit6 doi: 10.1038/385050a0 – ident: ref10/cit10b doi: 10.1126/science.1138748 – ident: ref1/cit1a doi: 10.1021/cr200077m – ident: ref26/cit26b doi: 10.1021/ol051179r – ident: ref13/cit13 doi: 10.1039/FT9918702995 – ident: ref1/cit1e doi: 10.1039/C2CS35254K |
SSID | ssj0004281 |
Score | 2.5973907 |
Snippet | The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of... The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M L coordination cage because of a... The Kemp elimination (reaction of benzisoxazole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2821 |
Title | Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis |
URI | http://dx.doi.org/10.1021/jacs.7b11334 https://www.ncbi.nlm.nih.gov/pubmed/29412665 https://search.proquest.com/docview/1999682078 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNrgS3pmocx3a4lYi2IMGlVOqtsh0HKqQUtcmFL-CzGWehoqiCWzSyncQztt-MZ0HoikjFYkYjh2keOdSTnhMI3XYiGigFGnQ7EDZQ-PGJ9Yf0YeSPFg6yyzf4xOYH0vMWVy4oU3QdbRAOmreFQOFgEf9IhFvBXC6YVzq4L_e2B5Ce_zyAVqDK_HTp7qBeFaNTOJW8tbJUtfTH75SNf3z4LtouASbuFBKxh9ZMso82w6qu2wH6DK3FxiYiwZMESxwWNlmNwykoopPCOgjUF4Nzf4K8ia0w4dzaEky4Z38ES3gaZLNYalPSO4mV4Bt8n7xOVO4I1sQdXVVPa-Y9Olk61dXrD9Gwe_cc9p2yHoMjKfNTJxaax8yaoTRTWkWwnj2mg3YspWjzWDKuYD-QnMc-CWQAbFauARpsERHjhHpHqJZME3OCsE8jIZimRFEQFGOsYMBRKXXgC-35bh01YPbG5Xqaj_OrcgKqiqWWc1pH1xUjx-9Fao4V7RoVl8cw1fZCRCZmmsGoVtsDCMRFHR0X7P8eiQTUBfDin_7jS87QFuAoUUS6n6NaOsvMBWCVVF3mgvoF5Wjidg |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALpZTHUgpGam8EbRLHdnrbRtDltRdA4hbZjkNXlbJoN7nwC_jZnXESUJGQuEWj2HHsseeb8TwAvkfaiFLwIhBWFgGPdRykyg6DgqfGoAY9TBUFCl9NxPiWn98ld12wOsXC4CAW2NPCX-K_ZBegNEFIlCZEnYovwceEqlUSEsquX8IgIxX2aFcqEXd-7q9bkxyyi__l0Bvg0guZ008weR6e9y35e9zU5tg-vsrc-O7xr8NaBzfZqOWPz_DBVRuwkvVV3r7AU0b2G0pLwqYV0yxrLbSWZTNUS6etrRCp94557wL_CtWbCH5RQSb2m_6HaXy6bualtq6jjyri55_srPozNd4t7IiNbF9L7ci3GDX1zPaf34Tb05ObbBx01RkCzUVSB6WyshRklLLCWFPg7o6FTYel1mooSy2kwdNBS1kmUapTXHQTOqThgVEIGfF4C5arWeV2gCW8UEpYHhmObOMcsQkKTm3TRNk4CQdwiLOXd7trkfuL8wgVF6J2czqAH_165g9too433jvsFzvHqabrEV25WYO9ku6HgEiqAWy3XPDcU5TyEKFMsvuOkRzAyvjm6jK_PJtcfIVVRFiqjYHfg-V63rhviGJqs-959x_Vp-rj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3bbtMw9Kgr0rYXYLBBuWyuBG_L1CSO7fAWAl0LrEJsk_YW2Y7DKqS0apMXvoDP5thJiqg0aXuLTnz3sc_F5wLwLpCKFYzmHtM892goQy8WeuTlNFYKJehRLKyj8MWMTa7pl5vopgd-5wuDg1hjS2v3iG9P9TIv2ggDNlQQ_uDKR7mK7sCjCC9aa8WVpJf_XCED4XccLxcsbG3dt2tbWqTX_9OiOxhMR2jGT-DHZojOvuTXWV2pM_17K3rjg-bwFB63bCdJGjw5gJ4pn8Fe2mV7ew5_UqvHseFJyLwkkqSNplaTdIHi6bzRGSL0pyHOysAVsXknvI82MRM5t3MiEr8u61UhtWnhSWnx-gOZlrdz5czDTkmiu5xqp65GUlcL3XV_CNfjz1fpxGuzNHiSsqjyCqF5waxySjOlVY6nPGQ6HhVSihEvJOMKbwnJeREFsYxx85VvEIYXR854QMMj6JeL0rwEEtFcCKZpoCiijzEWXZCASh1HQoeRP4Ahrl7WnrJ15h7QAxRgLLRd0wG87_Y0WzYBO-4oN-w2PMOlts8ksjSLGlu1MiAyRlwM4EWDCZuWgpj6yNJEr-4xkhPY_f5pnH2bzr6-hn1ktETjCv8G-tWqNm-RmanUsUPfv48-7WY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalysis+in+a+Cationic+Coordination+Cage+Using+a+Cavity-Bound+Guest+and+Surface-Bound+Anions%3A+Inhibition%2C+Activation%2C+and+Autocatalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Cullen%2C+William&rft.au=Metherell%2C+Alexander+J&rft.au=Wragg%2C+Ashley+B&rft.au=Taylor%2C+Christopher+G+P&rft.date=2018-02-28&rft.eissn=1520-5126&rft.volume=140&rft.issue=8&rft.spage=2821&rft_id=info:doi/10.1021%2Fjacs.7b11334&rft_id=info%3Apmid%2F29412665&rft.externalDocID=29412665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |