Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis

The Kemp elimination (reaction of benz­isox­azole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benz­isox­azole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions aro...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 8; pp. 2821 - 2828
Main Authors Cullen, William, Metherell, Alexander J, Wragg, Ashley B, Taylor, Christopher G. P, Williams, Nicholas H, Ward, Michael D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Kemp elimination (reaction of benz­isox­azole with base to give 2-cyanophenolate) is catalyzed in the cavity of a cubic M8L12 coordination cage because of a combination of (i) benz­isox­azole binding in the cage cavity driven by the hydrophobic effect, and (ii) accumulation of hydroxide ions around the 16+ cage surface driven by ion-pairing. Here we show how reaction of the cavity-bound guest is modified by the presence of other anions which can also accumulate around the cage surface and displace hydroxide, inhibiting catalysis of the cage-based reaction. Addition of chloride or fluoride inhibits the reaction with hydroxide to the extent that a new autocatalytic pathway becomes apparent, resulting in a sigmoidal reaction profile. In this pathway the product 2-cyanophenolate itself accumulates around the cationic cage surface, acting as the base for the next reaction cycle. The affinity of different anions for the cage surface is therefore 2-cyanophenolate (generating autocatalysis) > chloride > fluoride (which both inhibit the reaction with hydroxide but cannot deprotonate the benz­isox­azole guest) > hydroxide (default reaction pathway). The presence of this autocatalytic pathway demonstrates that a reaction of a cavity-bound guest can be induced with different anions around the cage surface in a controllable way; this was confirmed by adding different phenolates to the reaction, which accelerate the Kemp elimination to different extents depending on their basicity. This represents a significant step toward the goal of using the cage as a catalyst for bimolecular reactions between a cavity-bound guest and anions accumulated around the surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b11334