Demographic Toxicokinetic–Toxicodynamic Modeling of Lethal Effects

The aquatic effect assessment of chemicals is largely based on standardized measures of toxicity determined in short-term laboratory tests which are designed to reduce variability. For this purpose, uniform individuals of a species are kept under environmental and chemical exposure conditions which...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 50; no. 11; pp. 6017 - 6024
Main Authors Gergs, André, Gabsi, Faten, Zenker, Armin, Preuss, Thomas G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aquatic effect assessment of chemicals is largely based on standardized measures of toxicity determined in short-term laboratory tests which are designed to reduce variability. For this purpose, uniform individuals of a species are kept under environmental and chemical exposure conditions which are as constant as possible. In nature, exposure often appears to be pulsed, effects might last longer than a few days, sensitivity might vary among different sized organisms and populations are usually size or age structured and are subject to demographic processes. To overcome this discrepancy, we tested toxicokinetic–toxicodynamic models of different complexities, including body size scaling approaches, for their ability to represent lethal effects observed for Daphnia magna exposed to triphenyltin. The consequences of the different toxicokinetic and toxicodynamic assumptions for population level responses to pulsed exposure are tested by means of an individual based model and are evaluated by confronting model predictions with population data for various pulsed exposure scenarios. We provide an example where increased model complexity reduces the uncertainty in model outputs. Furthermore, our results emphasize the importance of considering population demography in toxicokinetics and toxicodynamics for understanding and predicting potential chemical impacts at higher levels of biological organization.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.6b01113