Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruch’s Membrane for Modeling the Retinal Pigment Epithelium

Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch’s membrane. Nonporous silk membranes were prepared with comparabl...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 5; no. 8; pp. 4023 - 4036
Main Authors Harris, Thomas I, Paterson, Chase A, Farjood, Farhad, Wadsworth, Ian D, Caldwell, Lori, Lewis, Randolph V, Jones, Justin A, Vargis, Elizabeth
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch’s membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 μm) to that of native Bruch’s membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC–dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like “cobblestone” morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch’s membrane and develop more biomimetic retinal models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.9b00183