Optimization of Cavity-Based Negative Images to Boost Docking Enrichment in Virtual Screening

Molecular docking is a key in silico method used routinely in modern drug discovery projects. Although docking provides high-quality ligand binding predictions, it regularly fails to separate the active compounds from the inactive ones. In negative image-based rescoring (R-NiB), the shape/electrosta...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 62; no. 4; pp. 1100 - 1112
Main Authors Kurkinen, Sami T, Lehtonen, Jukka V, Pentikäinen, Olli T, Postila, Pekka A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Molecular docking is a key in silico method used routinely in modern drug discovery projects. Although docking provides high-quality ligand binding predictions, it regularly fails to separate the active compounds from the inactive ones. In negative image-based rescoring (R-NiB), the shape/electrostatic potential (ESP) of docking poses is compared to the negative image of the protein’s ligand binding cavity. While R-NiB often improves the docking yield considerably, the cavity-based models do not reach their full potential without expert editing. Accordingly, a greedy search-driven methodology, brute force negative image-based optimization (BR-NiB), is presented for optimizing the models via iterative editing and benchmarking. Thorough and unbiased training, testing and stringent validation with a multitude of drug targets, and alternative docking software show that BR-NiB ensures excellent docking efficacy. BR-NiB can be considered as a new type of shape-focused pharmacophore modeling, where the optimized models contain only the most vital cavity information needed for effectively filtering docked actives from the inactive or decoy compounds. Finally, the BR-NiB code for performing the automated optimization is provided free-of-charge under MIT license via GitHub (https://github.com/jvlehtonen/brutenib) for boosting the success rates of docking-based virtual screening campaigns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9596
1549-960X
DOI:10.1021/acs.jcim.1c01145