Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks

Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 137; no. 24; pp. 7810 - 7816
Main Authors Choi, Kyung Min, Na, Kyungsu, Somorjai, Gabor A, Yaghi, Omar M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (−NH3 +, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.
AbstractList Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (−NH3 +, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.
Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (-SO3H, S) and ammonium (-NH3(+), N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (-SO3H, S) and ammonium (-NH3(+), N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.
Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO₃H, S) and ammonium (−NH₃⁺, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr₆O₄(OH)₄(BDC)₆ (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C₆-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C₆-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.
Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (-SO3H, S) and ammonium (-NH3(+), N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.
Author Yaghi, Omar M
Somorjai, Gabor A
Choi, Kyung Min
Na, Kyungsu
AuthorAffiliation Department of Chemistry
University of California-Berkeley, Lawrence Berkeley National Laboratory, and Kavli Energy NanoSciences Institute
King Fahd University of Petroleum and Minerals
AuthorAffiliation_xml – name: Department of Chemistry
– name: University of California-Berkeley, Lawrence Berkeley National Laboratory, and Kavli Energy NanoSciences Institute
– name: King Fahd University of Petroleum and Minerals
Author_xml – sequence: 1
  givenname: Kyung Min
  surname: Choi
  fullname: Choi, Kyung Min
– sequence: 2
  givenname: Kyungsu
  surname: Na
  fullname: Na, Kyungsu
– sequence: 3
  givenname: Gabor A
  surname: Somorjai
  fullname: Somorjai, Gabor A
  email: somorjai@berkeley.edu
– sequence: 4
  givenname: Omar M
  surname: Yaghi
  fullname: Yaghi, Omar M
  email: yaghi@berkeley.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26023888$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompsdvqzbPh6MGp8LGwzNFMdqtJtT3oecIAY1kZWGGmzd78CU38h_4SmXZ7MRpPwMvzvvnyfifoKMRgEXpJyRklQN9ulc5nvCOML8kTtKAcSMUpiCO0IIRAtZKCHaOTnLfluQRJn6FjEASYlHKB7pprOzitPF6HG5diGGwYcRPDmKLHKpiiX6ugrcGNGpXfj07jK5v6mIZZxrHHV16NLkwD_qRC3KlUEG8zXg-dNaYYXbj_0WmfS4J3weKPttx-_fh5mb6qUBI3SQ32NqZv-Tl62iuf7YvDeYq-bNafm_fVxeX5h-bdRaWWgoyV7msCQoklFxYk18xKA7yTVNawAjBUMpCGM8FWpgNjmVaEcKY1W0na1YqdotcPubsUv082j-3gsrbeq2DjlFu4b4sA8P-iVNQUasYFFPTVAZ26wZp2l9yg0r59LLwA8ADoFHNOtm-1G0t9c-HK-ZaSdt5qO2-1PWy1mN78YXrM_Qd-mHcWt3FKoRT5d_Q3kKuzFQ
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c01832
crossref_primary_10_1038_s41578_020_0225_x
crossref_primary_10_1039_C5CC08972G
crossref_primary_10_1016_j_est_2021_102474
crossref_primary_10_1021_acsami_6b11567
crossref_primary_10_1002_eem2_12068
crossref_primary_10_1016_j_nantod_2022_101708
crossref_primary_10_1016_j_jelechem_2017_12_078
crossref_primary_10_1002_tcr_202100030
crossref_primary_10_1002_adfm_202302573
crossref_primary_10_1021_acscatal_6b02923
crossref_primary_10_1016_j_jece_2022_107548
crossref_primary_10_1021_acsanm_8b01397
crossref_primary_10_1039_C9CC00003H
crossref_primary_10_1039_D1TB01044A
crossref_primary_10_1002_chem_202004345
crossref_primary_10_1021_acs_chemmater_3c01495
crossref_primary_10_1002_ange_201905172
crossref_primary_10_1002_ange_201912381
crossref_primary_10_1038_s41598_021_90478_y
crossref_primary_10_1021_jacs_0c07257
crossref_primary_10_1021_acs_chemrev_1c00905
crossref_primary_10_1016_j_molstruc_2020_128841
crossref_primary_10_1021_acscatal_8b04055
crossref_primary_10_1002_vjch_202000072
crossref_primary_10_1016_j_micromeso_2021_111199
crossref_primary_10_1021_acsmaterialslett_4c01319
crossref_primary_10_1080_24701556_2018_1500594
crossref_primary_10_1021_acsami_8b04531
crossref_primary_10_1039_C7DT04229A
crossref_primary_10_1002_smll_201700683
crossref_primary_10_1016_j_trechm_2019_12_001
crossref_primary_10_1016_j_micromeso_2021_111633
crossref_primary_10_3390_nano8080619
crossref_primary_10_1016_j_jhazmat_2020_122332
crossref_primary_10_1039_C5CC06694H
crossref_primary_10_1002_anie_201511305
crossref_primary_10_1002_cctc_202400315
crossref_primary_10_1021_acs_nanolett_6b03637
crossref_primary_10_1016_j_apsusc_2024_160996
crossref_primary_10_1038_s41578_022_00482_5
crossref_primary_10_1016_j_micromeso_2017_10_014
crossref_primary_10_1002_cctc_201801452
crossref_primary_10_3390_membranes12060601
crossref_primary_10_1016_j_ccr_2023_215081
crossref_primary_10_1021_acs_inorgchem_6b00911
crossref_primary_10_1002_anie_201600497
crossref_primary_10_1039_C9CY00560A
crossref_primary_10_1002_asia_201501332
crossref_primary_10_1021_acscatal_3c01821
crossref_primary_10_1039_C7FD00160F
crossref_primary_10_1039_C7QI00437K
crossref_primary_10_1039_D2CC03233C
crossref_primary_10_1021_acs_iecr_8b03408
crossref_primary_10_1002_adma_201601133
crossref_primary_10_1002_smll_201702049
crossref_primary_10_1016_j_apsusc_2022_154980
crossref_primary_10_1007_s10924_017_1080_8
crossref_primary_10_1021_acs_langmuir_0c00152
crossref_primary_10_1016_j_ccr_2020_213655
crossref_primary_10_1002_anie_201905667
crossref_primary_10_1016_j_mcat_2023_113217
crossref_primary_10_1007_s11164_021_04427_5
crossref_primary_10_1021_acs_jpcc_7b07452
crossref_primary_10_1080_01614940_2024_2340582
crossref_primary_10_1021_acs_inorgchem_5b01900
crossref_primary_10_1016_j_ccr_2021_213827
crossref_primary_10_1002_chem_201503163
crossref_primary_10_1002_chem_201803200
crossref_primary_10_1016_j_memsci_2021_119550
crossref_primary_10_3390_ijerph191610437
crossref_primary_10_1039_C9TC00398C
crossref_primary_10_1039_D1FD00012H
crossref_primary_10_1134_S096554411714002X
crossref_primary_10_1021_acs_jpcc_0c08997
crossref_primary_10_1016_j_apcatb_2017_06_084
crossref_primary_10_1016_j_apcatb_2017_06_086
crossref_primary_10_1002_adma_201800702
crossref_primary_10_1021_acsami_1c10140
crossref_primary_10_1002_ange_201710164
crossref_primary_10_1021_acs_jpcc_6b06710
crossref_primary_10_1016_j_apcatb_2019_117804
crossref_primary_10_1039_C9DT01371G
crossref_primary_10_1007_s13738_017_1118_9
crossref_primary_10_1021_acsami_2c17313
crossref_primary_10_1002_tcr_202100230
crossref_primary_10_1021_acsami_1c22256
crossref_primary_10_1039_C7CC02130E
crossref_primary_10_1002_ange_201512054
crossref_primary_10_1007_s10562_020_03151_w
crossref_primary_10_1021_jacs_6b09167
crossref_primary_10_1039_C7CE00236J
crossref_primary_10_1021_acscatal_6b01753
crossref_primary_10_1016_j_jcis_2023_11_120
crossref_primary_10_1039_C8CC00970H
crossref_primary_10_1016_j_ica_2017_10_001
crossref_primary_10_1021_acs_jpcc_7b00957
crossref_primary_10_1039_C9DT00348G
crossref_primary_10_1039_C6CE02660E
crossref_primary_10_1039_C8CS00688A
crossref_primary_10_1002_adma_201703663
crossref_primary_10_1007_s10562_017_2289_9
crossref_primary_10_1016_j_ccr_2018_03_014
crossref_primary_10_1016_j_jssc_2020_121200
crossref_primary_10_1039_C7DT02095C
crossref_primary_10_1039_C9CS00250B
crossref_primary_10_1002_bkcs_12141
crossref_primary_10_1021_acsami_0c03756
crossref_primary_10_1016_j_micromeso_2022_112147
crossref_primary_10_1021_acsaem_2c01684
crossref_primary_10_1016_j_poly_2022_115950
crossref_primary_10_1039_C9TB00361D
crossref_primary_10_1016_j_ccr_2021_214273
crossref_primary_10_1002_cctc_201600956
crossref_primary_10_1039_C7FD00015D
crossref_primary_10_1002_cnl2_70004
crossref_primary_10_1021_jacs_6b10055
crossref_primary_10_1039_C6RA23401A
crossref_primary_10_1021_acs_analchem_6b04421
crossref_primary_10_1002_chem_201803094
crossref_primary_10_1039_C7CY00394C
crossref_primary_10_1073_pnas_1701280114
crossref_primary_10_1016_j_cclet_2021_11_035
crossref_primary_10_1007_s40820_020_0386_6
crossref_primary_10_1016_j_chempr_2020_11_023
crossref_primary_10_1039_C8TA08843H
crossref_primary_10_1007_s11426_017_9042_x
crossref_primary_10_1016_j_cattod_2024_114786
crossref_primary_10_1021_acs_chemrev_9b00223
crossref_primary_10_1002_smll_202003971
crossref_primary_10_1016_j_apsusc_2017_11_003
crossref_primary_10_1021_acs_langmuir_9b00452
crossref_primary_10_1016_j_mtbio_2024_101134
crossref_primary_10_1007_s00894_024_06099_5
crossref_primary_10_1016_j_molliq_2023_122754
crossref_primary_10_1007_s40242_022_2250_3
crossref_primary_10_1016_j_apcata_2020_117733
crossref_primary_10_1016_j_cej_2024_151736
crossref_primary_10_1007_s10854_021_07118_4
crossref_primary_10_1021_acs_jpcc_3c07828
crossref_primary_10_1016_j_jcat_2018_04_030
crossref_primary_10_1002_aenm_202100061
crossref_primary_10_2139_ssrn_4157593
crossref_primary_10_1016_j_ccr_2019_213016
crossref_primary_10_1039_D0CS01538E
crossref_primary_10_1016_j_jcat_2025_116079
crossref_primary_10_1002_anie_201512054
crossref_primary_10_1016_j_memsci_2021_120183
crossref_primary_10_1016_j_jcis_2017_03_101
crossref_primary_10_1039_C6CS00250A
crossref_primary_10_1016_j_mtchem_2018_12_004
crossref_primary_10_1002_anie_201511009
crossref_primary_10_1016_j_cej_2018_12_158
crossref_primary_10_1021_jacs_5b10666
crossref_primary_10_1039_D1CS00968K
crossref_primary_10_1039_C7RA05383E
crossref_primary_10_1002_cctc_201701546
crossref_primary_10_1002_cctc_201900918
crossref_primary_10_1016_j_jenvman_2020_110630
crossref_primary_10_1021_acs_jpcc_9b02547
crossref_primary_10_1038_natrevmats_2015_18
crossref_primary_10_1016_j_mcat_2020_111157
crossref_primary_10_1016_j_jcis_2020_11_033
crossref_primary_10_1039_D3SC04678H
crossref_primary_10_1016_j_apcatb_2017_10_031
crossref_primary_10_1002_batt_201900012
crossref_primary_10_1021_acs_jpca_6b03331
crossref_primary_10_1002_ange_201511305
crossref_primary_10_1021_acs_iecr_7b01457
crossref_primary_10_1039_C5CC08456C
crossref_primary_10_1002_anie_201710164
crossref_primary_10_1039_C5DT03359D
crossref_primary_10_1021_acscatal_5b01221
crossref_primary_10_1016_j_snb_2016_12_130
crossref_primary_10_1021_acsami_0c17797
crossref_primary_10_1007_s12274_021_3597_3
crossref_primary_10_1039_D3CS00873H
crossref_primary_10_1002_advs_201900250
crossref_primary_10_1002_adfm_202308946
crossref_primary_10_1039_C6TA05790J
crossref_primary_10_1021_jacs_5b10308
crossref_primary_10_1016_j_jcis_2019_01_097
crossref_primary_10_1007_s12274_017_1595_2
crossref_primary_10_1007_s10562_024_04725_8
crossref_primary_10_1039_C5CC05226B
crossref_primary_10_1021_acs_nanolett_9b04124
crossref_primary_10_1002_adma_202000041
crossref_primary_10_1002_ange_201915848
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1016_j_jcis_2017_03_037
crossref_primary_10_1021_acsomega_8b00157
crossref_primary_10_1016_j_mcat_2022_112476
crossref_primary_10_1039_C8NJ05318A
crossref_primary_10_1021_acs_chemmater_6b00880
crossref_primary_10_1039_D0NA00184H
crossref_primary_10_1016_j_matlet_2019_127077
crossref_primary_10_1039_C5CS00837A
crossref_primary_10_1088_1361_6528_ab30f6
crossref_primary_10_1002_adma_202210669
crossref_primary_10_1016_j_jpowsour_2016_06_037
crossref_primary_10_1038_s41467_019_10633_y
crossref_primary_10_1021_acs_inorgchem_1c03425
crossref_primary_10_1002_adfm_202000238
crossref_primary_10_1039_C5RA28113J
crossref_primary_10_1021_acs_chemmater_0c00059
crossref_primary_10_1002_anie_201915848
crossref_primary_10_1016_j_catcom_2019_105810
crossref_primary_10_1002_ange_201600497
crossref_primary_10_1002_cctc_201801067
crossref_primary_10_1016_j_molstruc_2017_11_111
crossref_primary_10_1039_C8GC03595D
crossref_primary_10_1016_j_jssc_2016_09_025
crossref_primary_10_1016_j_reactfunctpolym_2018_01_013
crossref_primary_10_1021_acs_cgd_7b01684
crossref_primary_10_1021_acs_langmuir_7b02900
crossref_primary_10_1021_acs_chemrev_2c00879
crossref_primary_10_1039_C7NR02913F
crossref_primary_10_1016_j_cej_2017_07_099
crossref_primary_10_1002_tcr_201700056
crossref_primary_10_1021_acsami_7b03555
crossref_primary_10_1038_s41467_021_24571_1
crossref_primary_10_1021_acsami_8b18584
crossref_primary_10_1039_C8SC05441J
crossref_primary_10_1002_aoc_4686
crossref_primary_10_1002_ange_201905667
crossref_primary_10_1016_j_ccr_2019_03_005
crossref_primary_10_1016_j_mtsust_2024_100966
crossref_primary_10_1039_D1CS00992C
crossref_primary_10_1039_C9CP05380H
crossref_primary_10_1016_j_jtice_2021_08_034
crossref_primary_10_1021_acscatal_6b00823
crossref_primary_10_1039_C8DT03844A
crossref_primary_10_1021_acsami_0c15340
crossref_primary_10_1021_acscatal_6b02327
crossref_primary_10_1039_C6CS00724D
crossref_primary_10_1039_D1QM00402F
crossref_primary_10_1016_j_fuel_2022_123904
crossref_primary_10_1039_D2CE01530G
crossref_primary_10_1002_smll_201804849
crossref_primary_10_1039_C9CY01415B
crossref_primary_10_1016_j_jssc_2019_121093
crossref_primary_10_1007_s12274_015_0970_0
crossref_primary_10_1021_acsanm_9b02415
crossref_primary_10_1002_cctc_201801807
crossref_primary_10_1021_jacs_2c09136
crossref_primary_10_1246_cl_200326
crossref_primary_10_1039_C6CE01794K
crossref_primary_10_1021_jacs_7b00058
crossref_primary_10_1002_adfm_201908924
crossref_primary_10_1021_acscatal_6b00397
crossref_primary_10_1002_cctc_201801925
crossref_primary_10_1039_C5RA23132A
crossref_primary_10_1039_D0SC03940C
crossref_primary_10_1002_anie_201905172
crossref_primary_10_1021_jacs_8b05765
crossref_primary_10_2139_ssrn_4121594
crossref_primary_10_1016_j_nantod_2018_12_002
crossref_primary_10_1039_D2AY00195K
crossref_primary_10_1021_acssuschemeng_8b03843
crossref_primary_10_1039_D1RA05957B
crossref_primary_10_3390_chemistry5020060
crossref_primary_10_1021_acsami_4c13115
crossref_primary_10_1039_C6CC09270E
crossref_primary_10_1002_anie_201712645
crossref_primary_10_1007_s40242_022_2210_y
crossref_primary_10_1021_acs_chemmater_0c03007
crossref_primary_10_1039_D0CS00920B
crossref_primary_10_1002_ange_201511009
crossref_primary_10_1002_slct_201701230
crossref_primary_10_1007_s10562_022_04026_y
crossref_primary_10_1021_acs_cgd_6b01533
crossref_primary_10_1021_acs_inorgchem_5b02880
crossref_primary_10_1021_acs_energyfuels_1c00168
crossref_primary_10_1021_jacs_7b06859
crossref_primary_10_1021_acs_inorgchem_5b02645
crossref_primary_10_1016_j_surfin_2024_104729
crossref_primary_10_1002_chem_201704119
crossref_primary_10_1002_ange_201712645
crossref_primary_10_1002_anie_201912381
crossref_primary_10_1111_jace_18672
crossref_primary_10_1016_j_cej_2018_10_043
crossref_primary_10_1002_marc_201900333
crossref_primary_10_1021_jacs_6b06185
Cites_doi 10.1039/C5QI00010F
10.1039/c2dt31195j
10.1021/cm102601v
10.1038/nchem.1272
10.1039/C4NR05421K
10.1063/1.1497629
10.1039/9781782621034-00006
10.1039/B802654H
10.1021/cm102529c
10.1002/chem.201101705
10.1021/ja507119n
10.1139/v78-385
10.1021/ar000110a
10.1021/ja01159a025
10.1021/cr00035a003
10.1039/C4SC01847H
10.1021/jp501775q
10.1002/anie.201205078
10.1002/ejic.201402409
10.1021/ja404514r
10.1021/ja509273h
10.1038/nchem.1465
10.1021/ic200744y
10.1039/C4TA04311A
10.1021/nl503007h
10.1021/cs5006635
10.1016/S0021-9517(02)00132-X
10.1021/ja8057953
10.1021/nn5027092
10.1016/j.micromeso.2004.06.030
10.1039/C4CC04479G
10.1021/ja306869j
10.1039/C2CC33964A
10.1021/ja9047653
10.1002/adma.201400620
10.1021/cs400982n
10.1021/ja411468e
10.1039/C4CC06568A
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.5b03540
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 7816
ExternalDocumentID 26023888
10_1021_jacs_5b03540
c989117319
Genre Journal Article
GroupedDBID -
.K2
02
186
1WB
3EH
3O-
4.4
41
53G
55A
5GY
5RE
5VS
6XO
7~N
85S
AABXI
AAUPJ
AAYJJ
ABDEX
ABDMP
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ABWLT
ACBNA
ACCAO
ACGFS
ACJ
ACKIV
ACNCT
ACS
ADKFC
AEESW
AENEX
AETEA
AFDAS
AFEFF
AFFDN
AFFNX
AFMIJ
AGXLV
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
D0S
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GJ
GNL
HR
IH9
IHE
JG
JG~
K2
K78
LG6
MVM
NHB
OHT
P-O
P2P
RNS
ROL
RXW
TAE
TAF
TN5
UBX
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VH1
VQA
W1F
WH7
X
X7L
XFK
YXA
YXE
YZZ
ZCG
ZE2
ZGI
ZHY
ZY4
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a460t-cf9026a6456e285c3e8d25b81892722d18328d53637db2de3ca0053cc3781b9a3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 06:35:28 EDT 2025
Fri Jul 11 12:06:10 EDT 2025
Mon Jul 21 06:02:51 EDT 2025
Tue Jul 01 04:33:14 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Thu Aug 27 13:42:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-cf9026a6456e285c3e8d25b81892722d18328d53637db2de3ca0053cc3781b9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26023888
PQID 1691293562
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000420225
proquest_miscellaneous_1691293562
pubmed_primary_26023888
crossref_citationtrail_10_1021_jacs_5b03540
crossref_primary_10_1021_jacs_5b03540
acs_journals_10_1021_jacs_5b03540
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
AGXLV
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
1WB
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-24
PublicationDateYYYYMMDD 2015-06-24
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Lu G. (ref5/cit5a) 2012; 4
Ke F. (ref5/cit5j) 2015; 7
Stephenson C. J. (ref5/cit5i) 2015; 2
White R. J. (ref2/cit2f) 2009; 38
Na K. (ref3/cit3) 2014; 14
Jiang H.-L. (ref4/cit4a) 2009; 131
Na K. (ref15/cit15b) 2014; 136
Guo Z. (ref4/cit4g) 2014; 4
Huang Y. (ref4/cit4c) 2011; 17
Esken D. (ref4/cit4b) 2010; 22
Choi K. M. (ref6/cit6b) 2014; 8
Jiang J. (ref8/cit8b) 2014; 136
Chen Y.-Z. (ref4/cit4f) 2014; 1
Chen L. (ref5/cit5e) 2014; 50
Chen L. (ref4/cit4e) 2014; 5
Gross E. (ref2/cit2b) 2012; 4
Huang Y. (ref5/cit5g) 2014; 50
Li X. (ref4/cit4h) 2014; 4
Ke F. (ref5/cit5c) 2013; 49
Na K. (ref15/cit15a) 2014; 118
Hermannsdörfer J. (ref4/cit4d) 2012; 51
Zhao M. (ref5/cit5d) 2014; 136
Guthrie J. P. (ref12/cit12) 1978; 56
Luan Y. (ref4/cit4i) 2014; 2
Zhang W. (ref5/cit5h) 2014; 26
Walling C. (ref8/cit8a) 1950; 72
Gates B. C. (ref2/cit2c) 1995; 95
Jacox M. E. (ref11/cit11) 2013; 32
Cavka J. H. (ref6/cit6a) 2008; 130
Morris W. (ref10/cit10) 2011; 50
Wu H. (ref14/cit14) 2013; 135
Somorjai G. A. (ref1/cit1b) 2010
Balasanthiran C. (ref1/cit1a) 2014
Taguchi A. (ref2/cit2e) 2005; 77
Kuo C.-H. (ref5/cit5b) 2012; 134
Kandiah M. (ref7/cit7) 2010; 22
Hornback J. M. (ref13/cit13) 2005
Corma A. (ref2/cit2d) 2003; 216
Rösler C. (ref5/cit5f) 2014; 32
Crooks R. M. (ref2/cit2a) 2001; 34
Foo M. L. (ref9/cit9) 2012; 41
References_xml – volume: 2
  start-page: 448
  year: 2015
  ident: ref5/cit5i
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00010F
– volume: 41
  start-page: 13791
  year: 2012
  ident: ref9/cit9
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt31195j
– volume: 22
  start-page: 6632
  year: 2010
  ident: ref7/cit7
  publication-title: Chem. Mater.
  doi: 10.1021/cm102601v
– volume: 4
  start-page: 310
  year: 2012
  ident: ref5/cit5a
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1272
– volume: 7
  start-page: 1201
  year: 2015
  ident: ref5/cit5j
  publication-title: Nanoscale
  doi: 10.1039/C4NR05421K
– volume: 32
  start-page: 1
  year: 2013
  ident: ref11/cit11
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1497629
– start-page: 6
  volume-title: Metal Nanoparticles for Catalysis
  year: 2014
  ident: ref1/cit1a
  doi: 10.1039/9781782621034-00006
– volume-title: Organic Chemistry
  year: 2005
  ident: ref13/cit13
– volume: 38
  start-page: 481
  year: 2009
  ident: ref2/cit2f
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B802654H
– volume: 22
  start-page: 6393
  year: 2010
  ident: ref4/cit4b
  publication-title: Chem. Mater.
  doi: 10.1021/cm102529c
– volume: 17
  start-page: 12706
  year: 2011
  ident: ref4/cit4c
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201101705
– volume: 136
  start-page: 12844
  year: 2014
  ident: ref8/cit8b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507119n
– volume: 56
  start-page: 2342
  year: 1978
  ident: ref12/cit12
  publication-title: Can. J. Chem.
  doi: 10.1139/v78-385
– volume-title: Introduction to Surface Chemistry and Catalysis
  year: 2010
  ident: ref1/cit1b
– volume: 34
  start-page: 181
  year: 2001
  ident: ref2/cit2a
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar000110a
– volume: 72
  start-page: 1164
  year: 1950
  ident: ref8/cit8a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01159a025
– volume: 95
  start-page: 511
  year: 1995
  ident: ref2/cit2c
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a003
– volume: 5
  start-page: 3708
  year: 2014
  ident: ref4/cit4e
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01847H
– volume: 118
  start-page: 8446
  year: 2014
  ident: ref15/cit15a
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp501775q
– volume: 51
  start-page: 11473
  year: 2012
  ident: ref4/cit4d
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205078
– volume: 32
  start-page: 5514
  year: 2014
  ident: ref5/cit5f
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201402409
– volume: 135
  start-page: 10525
  year: 2013
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404514r
– volume: 1
  start-page: 71
  year: 2014
  ident: ref4/cit4f
  publication-title: Small
– volume: 136
  start-page: 17207
  year: 2014
  ident: ref15/cit15b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509273h
– volume: 4
  start-page: 947
  year: 2012
  ident: ref2/cit2b
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1465
– volume: 50
  start-page: 6853
  year: 2011
  ident: ref10/cit10
  publication-title: Inorg. Chem.
  doi: 10.1021/ic200744y
– volume: 2
  start-page: 20588
  year: 2014
  ident: ref4/cit4i
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04311A
– volume: 14
  start-page: 5979
  year: 2014
  ident: ref3/cit3
  publication-title: Nano Lett.
  doi: 10.1021/nl503007h
– volume: 4
  start-page: 3490
  year: 2014
  ident: ref4/cit4h
  publication-title: ACS Catal.
  doi: 10.1021/cs5006635
– volume: 216
  start-page: 298
  year: 2003
  ident: ref2/cit2d
  publication-title: J. Catal.
  doi: 10.1016/S0021-9517(02)00132-X
– volume: 130
  start-page: 13850
  year: 2008
  ident: ref6/cit6a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8057953
– volume: 8
  start-page: 7451
  year: 2014
  ident: ref6/cit6b
  publication-title: ACS Nano
  doi: 10.1021/nn5027092
– volume: 77
  start-page: 1
  year: 2005
  ident: ref2/cit2e
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2004.06.030
– volume: 50
  start-page: 10115
  year: 2014
  ident: ref5/cit5g
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04479G
– volume: 134
  start-page: 14345
  year: 2012
  ident: ref5/cit5b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306869j
– volume: 49
  start-page: 1267
  year: 2013
  ident: ref5/cit5c
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC33964A
– volume: 131
  start-page: 11302
  year: 2009
  ident: ref4/cit4a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9047653
– volume: 26
  start-page: 4056
  year: 2014
  ident: ref5/cit5h
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400620
– volume: 4
  start-page: 1340
  year: 2014
  ident: ref4/cit4g
  publication-title: ACS Catal.
  doi: 10.1021/cs400982n
– volume: 136
  start-page: 1738
  year: 2014
  ident: ref5/cit5d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411468e
– volume: 50
  start-page: 14752
  year: 2014
  ident: ref5/cit5e
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06568A
SSID ssj0004281
Score 2.5947096
Snippet Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the...
Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7810
SubjectTerms alkenes
benzene
catalysts
catalytic activity
coordination polymers
crystal structure
cyclohexanes
gases
isomers
nanocrystals
nanoparticles
platinum
sulfonic acids
Title Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks
URI http://dx.doi.org/10.1021/jacs.5b03540
https://www.ncbi.nlm.nih.gov/pubmed/26023888
https://www.proquest.com/docview/1691293562
https://www.proquest.com/docview/2000420225
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-Dnrx_agvIuhJtrTZJJscZWkVoSKo4K1kkyyKuhXbHvTkTxD8h_4SZ_bRolL0tmSzu9lkJvNN8s2EkAPtEm1SLQLOGlHArdKBBrMXcI542XnDNQY4d87l6TU_uxE3Y4Lszx18hvmBbL8ukgYuUEyTWSZBfxECxZfj-EemmhXMjZQMS4L7z6fRANn-dwM0AVXm1qW9SE6qGJ2CVHJfHw6Sun39nbLxj4YvkYUSYNLjQiKWyZTPVshcXJ3rtkreqxwBtDUOcqNxQVmnJnNQfpvzAmiMazsv8CJ6MY4voL2UXiCDLhs-UpicwesuyXW09Zh4mMgcvcvyO_b5BcAnZv32tOPh6vPtowj-tLRdscL6a-S63bqKT4PyXIbAcNkYBDbV4LkZCdjLMyVs6JVjIgHTr1nEmMNZQjkRyjByCXM-tAZ13dowApCsTbhOZrJe5jcJRfV30inwiSUHMJQ0dWqNbEovvUhlo0b2oRe7pV71u_mWOQOXBUvLvq2Ro2pAu7ZMbI7nazxMqH04qv1UJPSYUG-_ko0uDBBuo5jM94bQBqkRJAFwnFyH5VIJ-EjUyEYhWKOvgQcJOEmprX_82zaZB4QmkJvG-A6ZGTwP_S6goEGyl6vAF3WzAj8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtswDCa29tBdurXd1qz7UYHuNLhIZEmWjoWRINuaoEBboDdDlmR02OoMdXLoTnuEAXvDPUlJ_yRYgQC9GTJt0xJFfpRICuDI-NzYwshI8H4SCadNZNDsRUIQXvbBCkMJzpOpGl-KL1fyqk1Wp1wYZKLCN1X1Jv6qugCVCcJGmfdpneIpbCIO4STQJ-n5Kg2S60GHdhOt4jbO_eHTZIdc9b8dWgMuayMzeg7TJXt1bMn348U8P3a_HlRufDT_L2C7hZvspJGPHXgSyl3YSrtT3vbgT1cxgA1XKW8sbQLYmS09tl_XUQIspZWeO3wRO1tlG7BZwc4onq5c3DBU1eiDt6F2bHiTB1Rrnn0r6zvu9g6hKNUAD2wS8Orf779NKqhjoy5GrHoJl6PhRTqO2lMaIitUfx65wqAfZxUiscC1dHHQnsscgYDhCeeedIb2MlZx4nPuQ-wszXzn4gQhs7HxK9goZ2XYB0bKwCuv0UNWAqFRPjCFs2qgggqyUP0eHGIvZu0sq7J6A52jA0Otbd_24FM3rplry5zTaRs_1lB_XFL_bMp7rKE77EQkwwGiTRVbhtkCeVCGIBPCyPU0vBZOREuyB68b-Vp-Df1JRE1av3nEv32ArfHF5DQ7_Tz9egDPELtJilrj4i1szG8X4R3io3n-vp4V96cuCqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVgIutDwK21JwJTihVLuO7djHKt1VC7RaAZV6ixzbEQiarZrdQznxEyr1H_aXdCaPXVFpJbhFzsTxYzz-xvMwwDvjc2MLIyPB-0kknDaRwW0vEoLwsg9WGApwPj5Rh6fi45k8W4FBFwuDjaiwpqo24tOqvvBFm2GAUgXhC5n36aziAayRxY6Yej_9ugiF5HrQId5Eq7j1db__Ne1Frvp7L1oCMOuNZrQOX-ZNrP1Lfu7Npvme-30ve-N_9WEDnrSwk-03fPIUVkL5DB6l3W1vz-G6yxzAhovQN5Y2juzMlh7Lv9feAiylE58rrIiNF1EHbFKwMfnVlbNzhiIbdfHW5Y4Nz_OA4s2zH2X9xl1eISSlXOCBHQd8uv1z04SEOjbqfMWqF3A6Gn5LD6P2tobICtWfRq4wqM9ZhYgscC1dHLTnMkdAYHjCuSfZob2MVZz4nPsQO0sSwLk4QehsbLwJq-WkDK-AkVDwymvUlJVAiJQPTOGsGqiggixUvwe7OIpZu9qqrDakc1RkqLQd2x586OY2c226c7p149cS6vdz6osmzccSut2OTTKcIDKu2DJMZtgGZQg6IZxcTsNrBkXUJHvwsuGx-d9Qr0T0pPXWP_TtLTwcH4yyz0cnn7bhMUI4Sc5rXLyG1enlLOwgTJrmb-qFcQc_rQ0j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Environment+Control+and+Enhanced+Catalytic+Performance+of+Platinum+Nanoparticles+Embedded+in+Nanocrystalline+Metal-Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Choi%2C+Kyung+Min&rft.au=Na%2C+Kyungsu&rft.au=Somorjai%2C+Gabor+A&rft.au=Yaghi%2C+Omar+M&rft.date=2015-06-24&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=137&rft.issue=24&rft.spage=7810&rft_id=info:doi/10.1021%2Fjacs.5b03540&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon