Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks
Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (...
Saved in:
Published in | Journal of the American Chemical Society Vol. 137; no. 24; pp. 7810 - 7816 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (−NH3 +, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h. |
---|---|
AbstractList | Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (−NH3 +, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h. Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (-SO3H, S) and ammonium (-NH3(+), N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (-SO3H, S) and ammonium (-NH3(+), N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h. Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO₃H, S) and ammonium (−NH₃⁺, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr₆O₄(OH)₄(BDC)₆ (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C₆-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C₆-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h. Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (-SO3H, S) and ammonium (-NH3(+), N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h. |
Author | Yaghi, Omar M Somorjai, Gabor A Choi, Kyung Min Na, Kyungsu |
AuthorAffiliation | Department of Chemistry University of California-Berkeley, Lawrence Berkeley National Laboratory, and Kavli Energy NanoSciences Institute King Fahd University of Petroleum and Minerals |
AuthorAffiliation_xml | – name: Department of Chemistry – name: University of California-Berkeley, Lawrence Berkeley National Laboratory, and Kavli Energy NanoSciences Institute – name: King Fahd University of Petroleum and Minerals |
Author_xml | – sequence: 1 givenname: Kyung Min surname: Choi fullname: Choi, Kyung Min – sequence: 2 givenname: Kyungsu surname: Na fullname: Na, Kyungsu – sequence: 3 givenname: Gabor A surname: Somorjai fullname: Somorjai, Gabor A email: somorjai@berkeley.edu – sequence: 4 givenname: Omar M surname: Yaghi fullname: Yaghi, Omar M email: yaghi@berkeley.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26023888$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompsdvqzbPh6MGp8LGwzNFMdqtJtT3oecIAY1kZWGGmzd78CU38h_4SmXZ7MRpPwMvzvvnyfifoKMRgEXpJyRklQN9ulc5nvCOML8kTtKAcSMUpiCO0IIRAtZKCHaOTnLfluQRJn6FjEASYlHKB7pprOzitPF6HG5diGGwYcRPDmKLHKpiiX6ugrcGNGpXfj07jK5v6mIZZxrHHV16NLkwD_qRC3KlUEG8zXg-dNaYYXbj_0WmfS4J3weKPttx-_fh5mb6qUBI3SQ32NqZv-Tl62iuf7YvDeYq-bNafm_fVxeX5h-bdRaWWgoyV7msCQoklFxYk18xKA7yTVNawAjBUMpCGM8FWpgNjmVaEcKY1W0na1YqdotcPubsUv082j-3gsrbeq2DjlFu4b4sA8P-iVNQUasYFFPTVAZ26wZp2l9yg0r59LLwA8ADoFHNOtm-1G0t9c-HK-ZaSdt5qO2-1PWy1mN78YXrM_Qd-mHcWt3FKoRT5d_Q3kKuzFQ |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_0c01832 crossref_primary_10_1038_s41578_020_0225_x crossref_primary_10_1039_C5CC08972G crossref_primary_10_1016_j_est_2021_102474 crossref_primary_10_1021_acsami_6b11567 crossref_primary_10_1002_eem2_12068 crossref_primary_10_1016_j_nantod_2022_101708 crossref_primary_10_1016_j_jelechem_2017_12_078 crossref_primary_10_1002_tcr_202100030 crossref_primary_10_1002_adfm_202302573 crossref_primary_10_1021_acscatal_6b02923 crossref_primary_10_1016_j_jece_2022_107548 crossref_primary_10_1021_acsanm_8b01397 crossref_primary_10_1039_C9CC00003H crossref_primary_10_1039_D1TB01044A crossref_primary_10_1002_chem_202004345 crossref_primary_10_1021_acs_chemmater_3c01495 crossref_primary_10_1002_ange_201905172 crossref_primary_10_1002_ange_201912381 crossref_primary_10_1038_s41598_021_90478_y crossref_primary_10_1021_jacs_0c07257 crossref_primary_10_1021_acs_chemrev_1c00905 crossref_primary_10_1016_j_molstruc_2020_128841 crossref_primary_10_1021_acscatal_8b04055 crossref_primary_10_1002_vjch_202000072 crossref_primary_10_1016_j_micromeso_2021_111199 crossref_primary_10_1021_acsmaterialslett_4c01319 crossref_primary_10_1080_24701556_2018_1500594 crossref_primary_10_1021_acsami_8b04531 crossref_primary_10_1039_C7DT04229A crossref_primary_10_1002_smll_201700683 crossref_primary_10_1016_j_trechm_2019_12_001 crossref_primary_10_1016_j_micromeso_2021_111633 crossref_primary_10_3390_nano8080619 crossref_primary_10_1016_j_jhazmat_2020_122332 crossref_primary_10_1039_C5CC06694H crossref_primary_10_1002_anie_201511305 crossref_primary_10_1002_cctc_202400315 crossref_primary_10_1021_acs_nanolett_6b03637 crossref_primary_10_1016_j_apsusc_2024_160996 crossref_primary_10_1038_s41578_022_00482_5 crossref_primary_10_1016_j_micromeso_2017_10_014 crossref_primary_10_1002_cctc_201801452 crossref_primary_10_3390_membranes12060601 crossref_primary_10_1016_j_ccr_2023_215081 crossref_primary_10_1021_acs_inorgchem_6b00911 crossref_primary_10_1002_anie_201600497 crossref_primary_10_1039_C9CY00560A crossref_primary_10_1002_asia_201501332 crossref_primary_10_1021_acscatal_3c01821 crossref_primary_10_1039_C7FD00160F crossref_primary_10_1039_C7QI00437K crossref_primary_10_1039_D2CC03233C crossref_primary_10_1021_acs_iecr_8b03408 crossref_primary_10_1002_adma_201601133 crossref_primary_10_1002_smll_201702049 crossref_primary_10_1016_j_apsusc_2022_154980 crossref_primary_10_1007_s10924_017_1080_8 crossref_primary_10_1021_acs_langmuir_0c00152 crossref_primary_10_1016_j_ccr_2020_213655 crossref_primary_10_1002_anie_201905667 crossref_primary_10_1016_j_mcat_2023_113217 crossref_primary_10_1007_s11164_021_04427_5 crossref_primary_10_1021_acs_jpcc_7b07452 crossref_primary_10_1080_01614940_2024_2340582 crossref_primary_10_1021_acs_inorgchem_5b01900 crossref_primary_10_1016_j_ccr_2021_213827 crossref_primary_10_1002_chem_201503163 crossref_primary_10_1002_chem_201803200 crossref_primary_10_1016_j_memsci_2021_119550 crossref_primary_10_3390_ijerph191610437 crossref_primary_10_1039_C9TC00398C crossref_primary_10_1039_D1FD00012H crossref_primary_10_1134_S096554411714002X crossref_primary_10_1021_acs_jpcc_0c08997 crossref_primary_10_1016_j_apcatb_2017_06_084 crossref_primary_10_1016_j_apcatb_2017_06_086 crossref_primary_10_1002_adma_201800702 crossref_primary_10_1021_acsami_1c10140 crossref_primary_10_1002_ange_201710164 crossref_primary_10_1021_acs_jpcc_6b06710 crossref_primary_10_1016_j_apcatb_2019_117804 crossref_primary_10_1039_C9DT01371G crossref_primary_10_1007_s13738_017_1118_9 crossref_primary_10_1021_acsami_2c17313 crossref_primary_10_1002_tcr_202100230 crossref_primary_10_1021_acsami_1c22256 crossref_primary_10_1039_C7CC02130E crossref_primary_10_1002_ange_201512054 crossref_primary_10_1007_s10562_020_03151_w crossref_primary_10_1021_jacs_6b09167 crossref_primary_10_1039_C7CE00236J crossref_primary_10_1021_acscatal_6b01753 crossref_primary_10_1016_j_jcis_2023_11_120 crossref_primary_10_1039_C8CC00970H crossref_primary_10_1016_j_ica_2017_10_001 crossref_primary_10_1021_acs_jpcc_7b00957 crossref_primary_10_1039_C9DT00348G crossref_primary_10_1039_C6CE02660E crossref_primary_10_1039_C8CS00688A crossref_primary_10_1002_adma_201703663 crossref_primary_10_1007_s10562_017_2289_9 crossref_primary_10_1016_j_ccr_2018_03_014 crossref_primary_10_1016_j_jssc_2020_121200 crossref_primary_10_1039_C7DT02095C crossref_primary_10_1039_C9CS00250B crossref_primary_10_1002_bkcs_12141 crossref_primary_10_1021_acsami_0c03756 crossref_primary_10_1016_j_micromeso_2022_112147 crossref_primary_10_1021_acsaem_2c01684 crossref_primary_10_1016_j_poly_2022_115950 crossref_primary_10_1039_C9TB00361D crossref_primary_10_1016_j_ccr_2021_214273 crossref_primary_10_1002_cctc_201600956 crossref_primary_10_1039_C7FD00015D crossref_primary_10_1002_cnl2_70004 crossref_primary_10_1021_jacs_6b10055 crossref_primary_10_1039_C6RA23401A crossref_primary_10_1021_acs_analchem_6b04421 crossref_primary_10_1002_chem_201803094 crossref_primary_10_1039_C7CY00394C crossref_primary_10_1073_pnas_1701280114 crossref_primary_10_1016_j_cclet_2021_11_035 crossref_primary_10_1007_s40820_020_0386_6 crossref_primary_10_1016_j_chempr_2020_11_023 crossref_primary_10_1039_C8TA08843H crossref_primary_10_1007_s11426_017_9042_x crossref_primary_10_1016_j_cattod_2024_114786 crossref_primary_10_1021_acs_chemrev_9b00223 crossref_primary_10_1002_smll_202003971 crossref_primary_10_1016_j_apsusc_2017_11_003 crossref_primary_10_1021_acs_langmuir_9b00452 crossref_primary_10_1016_j_mtbio_2024_101134 crossref_primary_10_1007_s00894_024_06099_5 crossref_primary_10_1016_j_molliq_2023_122754 crossref_primary_10_1007_s40242_022_2250_3 crossref_primary_10_1016_j_apcata_2020_117733 crossref_primary_10_1016_j_cej_2024_151736 crossref_primary_10_1007_s10854_021_07118_4 crossref_primary_10_1021_acs_jpcc_3c07828 crossref_primary_10_1016_j_jcat_2018_04_030 crossref_primary_10_1002_aenm_202100061 crossref_primary_10_2139_ssrn_4157593 crossref_primary_10_1016_j_ccr_2019_213016 crossref_primary_10_1039_D0CS01538E crossref_primary_10_1016_j_jcat_2025_116079 crossref_primary_10_1002_anie_201512054 crossref_primary_10_1016_j_memsci_2021_120183 crossref_primary_10_1016_j_jcis_2017_03_101 crossref_primary_10_1039_C6CS00250A crossref_primary_10_1016_j_mtchem_2018_12_004 crossref_primary_10_1002_anie_201511009 crossref_primary_10_1016_j_cej_2018_12_158 crossref_primary_10_1021_jacs_5b10666 crossref_primary_10_1039_D1CS00968K crossref_primary_10_1039_C7RA05383E crossref_primary_10_1002_cctc_201701546 crossref_primary_10_1002_cctc_201900918 crossref_primary_10_1016_j_jenvman_2020_110630 crossref_primary_10_1021_acs_jpcc_9b02547 crossref_primary_10_1038_natrevmats_2015_18 crossref_primary_10_1016_j_mcat_2020_111157 crossref_primary_10_1016_j_jcis_2020_11_033 crossref_primary_10_1039_D3SC04678H crossref_primary_10_1016_j_apcatb_2017_10_031 crossref_primary_10_1002_batt_201900012 crossref_primary_10_1021_acs_jpca_6b03331 crossref_primary_10_1002_ange_201511305 crossref_primary_10_1021_acs_iecr_7b01457 crossref_primary_10_1039_C5CC08456C crossref_primary_10_1002_anie_201710164 crossref_primary_10_1039_C5DT03359D crossref_primary_10_1021_acscatal_5b01221 crossref_primary_10_1016_j_snb_2016_12_130 crossref_primary_10_1021_acsami_0c17797 crossref_primary_10_1007_s12274_021_3597_3 crossref_primary_10_1039_D3CS00873H crossref_primary_10_1002_advs_201900250 crossref_primary_10_1002_adfm_202308946 crossref_primary_10_1039_C6TA05790J crossref_primary_10_1021_jacs_5b10308 crossref_primary_10_1016_j_jcis_2019_01_097 crossref_primary_10_1007_s12274_017_1595_2 crossref_primary_10_1007_s10562_024_04725_8 crossref_primary_10_1039_C5CC05226B crossref_primary_10_1021_acs_nanolett_9b04124 crossref_primary_10_1002_adma_202000041 crossref_primary_10_1002_ange_201915848 crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1016_j_jcis_2017_03_037 crossref_primary_10_1021_acsomega_8b00157 crossref_primary_10_1016_j_mcat_2022_112476 crossref_primary_10_1039_C8NJ05318A crossref_primary_10_1021_acs_chemmater_6b00880 crossref_primary_10_1039_D0NA00184H crossref_primary_10_1016_j_matlet_2019_127077 crossref_primary_10_1039_C5CS00837A crossref_primary_10_1088_1361_6528_ab30f6 crossref_primary_10_1002_adma_202210669 crossref_primary_10_1016_j_jpowsour_2016_06_037 crossref_primary_10_1038_s41467_019_10633_y crossref_primary_10_1021_acs_inorgchem_1c03425 crossref_primary_10_1002_adfm_202000238 crossref_primary_10_1039_C5RA28113J crossref_primary_10_1021_acs_chemmater_0c00059 crossref_primary_10_1002_anie_201915848 crossref_primary_10_1016_j_catcom_2019_105810 crossref_primary_10_1002_ange_201600497 crossref_primary_10_1002_cctc_201801067 crossref_primary_10_1016_j_molstruc_2017_11_111 crossref_primary_10_1039_C8GC03595D crossref_primary_10_1016_j_jssc_2016_09_025 crossref_primary_10_1016_j_reactfunctpolym_2018_01_013 crossref_primary_10_1021_acs_cgd_7b01684 crossref_primary_10_1021_acs_langmuir_7b02900 crossref_primary_10_1021_acs_chemrev_2c00879 crossref_primary_10_1039_C7NR02913F crossref_primary_10_1016_j_cej_2017_07_099 crossref_primary_10_1002_tcr_201700056 crossref_primary_10_1021_acsami_7b03555 crossref_primary_10_1038_s41467_021_24571_1 crossref_primary_10_1021_acsami_8b18584 crossref_primary_10_1039_C8SC05441J crossref_primary_10_1002_aoc_4686 crossref_primary_10_1002_ange_201905667 crossref_primary_10_1016_j_ccr_2019_03_005 crossref_primary_10_1016_j_mtsust_2024_100966 crossref_primary_10_1039_D1CS00992C crossref_primary_10_1039_C9CP05380H crossref_primary_10_1016_j_jtice_2021_08_034 crossref_primary_10_1021_acscatal_6b00823 crossref_primary_10_1039_C8DT03844A crossref_primary_10_1021_acsami_0c15340 crossref_primary_10_1021_acscatal_6b02327 crossref_primary_10_1039_C6CS00724D crossref_primary_10_1039_D1QM00402F crossref_primary_10_1016_j_fuel_2022_123904 crossref_primary_10_1039_D2CE01530G crossref_primary_10_1002_smll_201804849 crossref_primary_10_1039_C9CY01415B crossref_primary_10_1016_j_jssc_2019_121093 crossref_primary_10_1007_s12274_015_0970_0 crossref_primary_10_1021_acsanm_9b02415 crossref_primary_10_1002_cctc_201801807 crossref_primary_10_1021_jacs_2c09136 crossref_primary_10_1246_cl_200326 crossref_primary_10_1039_C6CE01794K crossref_primary_10_1021_jacs_7b00058 crossref_primary_10_1002_adfm_201908924 crossref_primary_10_1021_acscatal_6b00397 crossref_primary_10_1002_cctc_201801925 crossref_primary_10_1039_C5RA23132A crossref_primary_10_1039_D0SC03940C crossref_primary_10_1002_anie_201905172 crossref_primary_10_1021_jacs_8b05765 crossref_primary_10_2139_ssrn_4121594 crossref_primary_10_1016_j_nantod_2018_12_002 crossref_primary_10_1039_D2AY00195K crossref_primary_10_1021_acssuschemeng_8b03843 crossref_primary_10_1039_D1RA05957B crossref_primary_10_3390_chemistry5020060 crossref_primary_10_1021_acsami_4c13115 crossref_primary_10_1039_C6CC09270E crossref_primary_10_1002_anie_201712645 crossref_primary_10_1007_s40242_022_2210_y crossref_primary_10_1021_acs_chemmater_0c03007 crossref_primary_10_1039_D0CS00920B crossref_primary_10_1002_ange_201511009 crossref_primary_10_1002_slct_201701230 crossref_primary_10_1007_s10562_022_04026_y crossref_primary_10_1021_acs_cgd_6b01533 crossref_primary_10_1021_acs_inorgchem_5b02880 crossref_primary_10_1021_acs_energyfuels_1c00168 crossref_primary_10_1021_jacs_7b06859 crossref_primary_10_1021_acs_inorgchem_5b02645 crossref_primary_10_1016_j_surfin_2024_104729 crossref_primary_10_1002_chem_201704119 crossref_primary_10_1002_ange_201712645 crossref_primary_10_1002_anie_201912381 crossref_primary_10_1111_jace_18672 crossref_primary_10_1016_j_cej_2018_10_043 crossref_primary_10_1002_marc_201900333 crossref_primary_10_1021_jacs_6b06185 |
Cites_doi | 10.1039/C5QI00010F 10.1039/c2dt31195j 10.1021/cm102601v 10.1038/nchem.1272 10.1039/C4NR05421K 10.1063/1.1497629 10.1039/9781782621034-00006 10.1039/B802654H 10.1021/cm102529c 10.1002/chem.201101705 10.1021/ja507119n 10.1139/v78-385 10.1021/ar000110a 10.1021/ja01159a025 10.1021/cr00035a003 10.1039/C4SC01847H 10.1021/jp501775q 10.1002/anie.201205078 10.1002/ejic.201402409 10.1021/ja404514r 10.1021/ja509273h 10.1038/nchem.1465 10.1021/ic200744y 10.1039/C4TA04311A 10.1021/nl503007h 10.1021/cs5006635 10.1016/S0021-9517(02)00132-X 10.1021/ja8057953 10.1021/nn5027092 10.1016/j.micromeso.2004.06.030 10.1039/C4CC04479G 10.1021/ja306869j 10.1039/C2CC33964A 10.1021/ja9047653 10.1002/adma.201400620 10.1021/cs400982n 10.1021/ja411468e 10.1039/C4CC06568A |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.5b03540 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 7816 |
ExternalDocumentID | 26023888 10_1021_jacs_5b03540 c989117319 |
Genre | Journal Article |
GroupedDBID | - .K2 02 186 1WB 3EH 3O- 4.4 41 53G 55A 5GY 5RE 5VS 6XO 7~N 85S AABXI AAUPJ AAYJJ ABDEX ABDMP ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ABWLT ACBNA ACCAO ACGFS ACJ ACKIV ACNCT ACS ADKFC AEESW AENEX AETEA AFDAS AFEFF AFFDN AFFNX AFMIJ AGXLV AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 D0S DU5 DZ EBS ED ED~ EJD ET F20 F5P GJ GNL HR IH9 IHE JG JG~ K2 K78 LG6 MVM NHB OHT P-O P2P RNS ROL RXW TAE TAF TN5 UBX UHB UI2 UKR UNC UPT UQL VF5 VG9 VH1 VQA W1F WH7 X X7L XFK YXA YXE YZZ ZCG ZE2 ZGI ZHY ZY4 --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a460t-cf9026a6456e285c3e8d25b81892722d18328d53637db2de3ca0053cc3781b9a3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 06:35:28 EDT 2025 Fri Jul 11 12:06:10 EDT 2025 Mon Jul 21 06:02:51 EDT 2025 Tue Jul 01 04:33:14 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Thu Aug 27 13:42:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a460t-cf9026a6456e285c3e8d25b81892722d18328d53637db2de3ca0053cc3781b9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26023888 |
PQID | 1691293562 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000420225 proquest_miscellaneous_1691293562 pubmed_primary_26023888 crossref_citationtrail_10_1021_jacs_5b03540 crossref_primary_10_1021_jacs_5b03540 acs_journals_10_1021_jacs_5b03540 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ AGXLV VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 1WB BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-24 |
PublicationDateYYYYMMDD | 2015-06-24 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Lu G. (ref5/cit5a) 2012; 4 Ke F. (ref5/cit5j) 2015; 7 Stephenson C. J. (ref5/cit5i) 2015; 2 White R. J. (ref2/cit2f) 2009; 38 Na K. (ref3/cit3) 2014; 14 Jiang H.-L. (ref4/cit4a) 2009; 131 Na K. (ref15/cit15b) 2014; 136 Guo Z. (ref4/cit4g) 2014; 4 Huang Y. (ref4/cit4c) 2011; 17 Esken D. (ref4/cit4b) 2010; 22 Choi K. M. (ref6/cit6b) 2014; 8 Jiang J. (ref8/cit8b) 2014; 136 Chen Y.-Z. (ref4/cit4f) 2014; 1 Chen L. (ref5/cit5e) 2014; 50 Chen L. (ref4/cit4e) 2014; 5 Gross E. (ref2/cit2b) 2012; 4 Huang Y. (ref5/cit5g) 2014; 50 Li X. (ref4/cit4h) 2014; 4 Ke F. (ref5/cit5c) 2013; 49 Na K. (ref15/cit15a) 2014; 118 Hermannsdörfer J. (ref4/cit4d) 2012; 51 Zhao M. (ref5/cit5d) 2014; 136 Guthrie J. P. (ref12/cit12) 1978; 56 Luan Y. (ref4/cit4i) 2014; 2 Zhang W. (ref5/cit5h) 2014; 26 Walling C. (ref8/cit8a) 1950; 72 Gates B. C. (ref2/cit2c) 1995; 95 Jacox M. E. (ref11/cit11) 2013; 32 Cavka J. H. (ref6/cit6a) 2008; 130 Morris W. (ref10/cit10) 2011; 50 Wu H. (ref14/cit14) 2013; 135 Somorjai G. A. (ref1/cit1b) 2010 Balasanthiran C. (ref1/cit1a) 2014 Taguchi A. (ref2/cit2e) 2005; 77 Kuo C.-H. (ref5/cit5b) 2012; 134 Kandiah M. (ref7/cit7) 2010; 22 Hornback J. M. (ref13/cit13) 2005 Corma A. (ref2/cit2d) 2003; 216 Rösler C. (ref5/cit5f) 2014; 32 Crooks R. M. (ref2/cit2a) 2001; 34 Foo M. L. (ref9/cit9) 2012; 41 |
References_xml | – volume: 2 start-page: 448 year: 2015 ident: ref5/cit5i publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00010F – volume: 41 start-page: 13791 year: 2012 ident: ref9/cit9 publication-title: Dalton Trans. doi: 10.1039/c2dt31195j – volume: 22 start-page: 6632 year: 2010 ident: ref7/cit7 publication-title: Chem. Mater. doi: 10.1021/cm102601v – volume: 4 start-page: 310 year: 2012 ident: ref5/cit5a publication-title: Nat. Chem. doi: 10.1038/nchem.1272 – volume: 7 start-page: 1201 year: 2015 ident: ref5/cit5j publication-title: Nanoscale doi: 10.1039/C4NR05421K – volume: 32 start-page: 1 year: 2013 ident: ref11/cit11 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.1497629 – start-page: 6 volume-title: Metal Nanoparticles for Catalysis year: 2014 ident: ref1/cit1a doi: 10.1039/9781782621034-00006 – volume-title: Organic Chemistry year: 2005 ident: ref13/cit13 – volume: 38 start-page: 481 year: 2009 ident: ref2/cit2f publication-title: Chem. Soc. Rev. doi: 10.1039/B802654H – volume: 22 start-page: 6393 year: 2010 ident: ref4/cit4b publication-title: Chem. Mater. doi: 10.1021/cm102529c – volume: 17 start-page: 12706 year: 2011 ident: ref4/cit4c publication-title: Chem.—Eur. J. doi: 10.1002/chem.201101705 – volume: 136 start-page: 12844 year: 2014 ident: ref8/cit8b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507119n – volume: 56 start-page: 2342 year: 1978 ident: ref12/cit12 publication-title: Can. J. Chem. doi: 10.1139/v78-385 – volume-title: Introduction to Surface Chemistry and Catalysis year: 2010 ident: ref1/cit1b – volume: 34 start-page: 181 year: 2001 ident: ref2/cit2a publication-title: Acc. Chem. Res. doi: 10.1021/ar000110a – volume: 72 start-page: 1164 year: 1950 ident: ref8/cit8a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01159a025 – volume: 95 start-page: 511 year: 1995 ident: ref2/cit2c publication-title: Chem. Rev. doi: 10.1021/cr00035a003 – volume: 5 start-page: 3708 year: 2014 ident: ref4/cit4e publication-title: Chem. Sci. doi: 10.1039/C4SC01847H – volume: 118 start-page: 8446 year: 2014 ident: ref15/cit15a publication-title: J. Phys. Chem. B doi: 10.1021/jp501775q – volume: 51 start-page: 11473 year: 2012 ident: ref4/cit4d publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205078 – volume: 32 start-page: 5514 year: 2014 ident: ref5/cit5f publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201402409 – volume: 135 start-page: 10525 year: 2013 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404514r – volume: 1 start-page: 71 year: 2014 ident: ref4/cit4f publication-title: Small – volume: 136 start-page: 17207 year: 2014 ident: ref15/cit15b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509273h – volume: 4 start-page: 947 year: 2012 ident: ref2/cit2b publication-title: Nat. Chem. doi: 10.1038/nchem.1465 – volume: 50 start-page: 6853 year: 2011 ident: ref10/cit10 publication-title: Inorg. Chem. doi: 10.1021/ic200744y – volume: 2 start-page: 20588 year: 2014 ident: ref4/cit4i publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04311A – volume: 14 start-page: 5979 year: 2014 ident: ref3/cit3 publication-title: Nano Lett. doi: 10.1021/nl503007h – volume: 4 start-page: 3490 year: 2014 ident: ref4/cit4h publication-title: ACS Catal. doi: 10.1021/cs5006635 – volume: 216 start-page: 298 year: 2003 ident: ref2/cit2d publication-title: J. Catal. doi: 10.1016/S0021-9517(02)00132-X – volume: 130 start-page: 13850 year: 2008 ident: ref6/cit6a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8057953 – volume: 8 start-page: 7451 year: 2014 ident: ref6/cit6b publication-title: ACS Nano doi: 10.1021/nn5027092 – volume: 77 start-page: 1 year: 2005 ident: ref2/cit2e publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2004.06.030 – volume: 50 start-page: 10115 year: 2014 ident: ref5/cit5g publication-title: Chem. Commun. doi: 10.1039/C4CC04479G – volume: 134 start-page: 14345 year: 2012 ident: ref5/cit5b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306869j – volume: 49 start-page: 1267 year: 2013 ident: ref5/cit5c publication-title: Chem. Commun. doi: 10.1039/C2CC33964A – volume: 131 start-page: 11302 year: 2009 ident: ref4/cit4a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9047653 – volume: 26 start-page: 4056 year: 2014 ident: ref5/cit5h publication-title: Adv. Mater. doi: 10.1002/adma.201400620 – volume: 4 start-page: 1340 year: 2014 ident: ref4/cit4g publication-title: ACS Catal. doi: 10.1021/cs400982n – volume: 136 start-page: 1738 year: 2014 ident: ref5/cit5d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411468e – volume: 50 start-page: 14752 year: 2014 ident: ref5/cit5e publication-title: Chem. Commun. doi: 10.1039/C4CC06568A |
SSID | ssj0004281 |
Score | 2.5947096 |
Snippet | Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the... Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal-organic frameworks (nMOFs) is useful in controlling the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7810 |
SubjectTerms | alkenes benzene catalysts catalytic activity coordination polymers crystal structure cyclohexanes gases isomers nanocrystals nanoparticles platinum sulfonic acids |
Title | Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks |
URI | http://dx.doi.org/10.1021/jacs.5b03540 https://www.ncbi.nlm.nih.gov/pubmed/26023888 https://www.proquest.com/docview/1691293562 https://www.proquest.com/docview/2000420225 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-Dnrx_agvIuhJtrTZJJscZWkVoSKo4K1kkyyKuhXbHvTkTxD8h_4SZ_bRolL0tmSzu9lkJvNN8s2EkAPtEm1SLQLOGlHArdKBBrMXcI542XnDNQY4d87l6TU_uxE3Y4Lszx18hvmBbL8ukgYuUEyTWSZBfxECxZfj-EemmhXMjZQMS4L7z6fRANn-dwM0AVXm1qW9SE6qGJ2CVHJfHw6Sun39nbLxj4YvkYUSYNLjQiKWyZTPVshcXJ3rtkreqxwBtDUOcqNxQVmnJnNQfpvzAmiMazsv8CJ6MY4voL2UXiCDLhs-UpicwesuyXW09Zh4mMgcvcvyO_b5BcAnZv32tOPh6vPtowj-tLRdscL6a-S63bqKT4PyXIbAcNkYBDbV4LkZCdjLMyVs6JVjIgHTr1nEmMNZQjkRyjByCXM-tAZ13dowApCsTbhOZrJe5jcJRfV30inwiSUHMJQ0dWqNbEovvUhlo0b2oRe7pV71u_mWOQOXBUvLvq2Ro2pAu7ZMbI7nazxMqH04qv1UJPSYUG-_ko0uDBBuo5jM94bQBqkRJAFwnFyH5VIJ-EjUyEYhWKOvgQcJOEmprX_82zaZB4QmkJvG-A6ZGTwP_S6goEGyl6vAF3WzAj8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtswDCa29tBdurXd1qz7UYHuNLhIZEmWjoWRINuaoEBboDdDlmR02OoMdXLoTnuEAXvDPUlJ_yRYgQC9GTJt0xJFfpRICuDI-NzYwshI8H4SCadNZNDsRUIQXvbBCkMJzpOpGl-KL1fyqk1Wp1wYZKLCN1X1Jv6qugCVCcJGmfdpneIpbCIO4STQJ-n5Kg2S60GHdhOt4jbO_eHTZIdc9b8dWgMuayMzeg7TJXt1bMn348U8P3a_HlRufDT_L2C7hZvspJGPHXgSyl3YSrtT3vbgT1cxgA1XKW8sbQLYmS09tl_XUQIspZWeO3wRO1tlG7BZwc4onq5c3DBU1eiDt6F2bHiTB1Rrnn0r6zvu9g6hKNUAD2wS8Orf779NKqhjoy5GrHoJl6PhRTqO2lMaIitUfx65wqAfZxUiscC1dHHQnsscgYDhCeeedIb2MlZx4nPuQ-wszXzn4gQhs7HxK9goZ2XYB0bKwCuv0UNWAqFRPjCFs2qgggqyUP0eHGIvZu0sq7J6A52jA0Otbd_24FM3rplry5zTaRs_1lB_XFL_bMp7rKE77EQkwwGiTRVbhtkCeVCGIBPCyPU0vBZOREuyB68b-Vp-Df1JRE1av3nEv32ArfHF5DQ7_Tz9egDPELtJilrj4i1szG8X4R3io3n-vp4V96cuCqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVgIutDwK21JwJTihVLuO7djHKt1VC7RaAZV6ixzbEQiarZrdQznxEyr1H_aXdCaPXVFpJbhFzsTxYzz-xvMwwDvjc2MLIyPB-0kknDaRwW0vEoLwsg9WGApwPj5Rh6fi45k8W4FBFwuDjaiwpqo24tOqvvBFm2GAUgXhC5n36aziAayRxY6Yej_9ugiF5HrQId5Eq7j1db__Ne1Frvp7L1oCMOuNZrQOX-ZNrP1Lfu7Npvme-30ve-N_9WEDnrSwk-03fPIUVkL5DB6l3W1vz-G6yxzAhovQN5Y2juzMlh7Lv9feAiylE58rrIiNF1EHbFKwMfnVlbNzhiIbdfHW5Y4Nz_OA4s2zH2X9xl1eISSlXOCBHQd8uv1z04SEOjbqfMWqF3A6Gn5LD6P2tobICtWfRq4wqM9ZhYgscC1dHLTnMkdAYHjCuSfZob2MVZz4nPsQO0sSwLk4QehsbLwJq-WkDK-AkVDwymvUlJVAiJQPTOGsGqiggixUvwe7OIpZu9qqrDakc1RkqLQd2x586OY2c226c7p149cS6vdz6osmzccSut2OTTKcIDKu2DJMZtgGZQg6IZxcTsNrBkXUJHvwsuGx-d9Qr0T0pPXWP_TtLTwcH4yyz0cnn7bhMUI4Sc5rXLyG1enlLOwgTJrmb-qFcQc_rQ0j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Environment+Control+and+Enhanced+Catalytic+Performance+of+Platinum+Nanoparticles+Embedded+in+Nanocrystalline+Metal-Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Choi%2C+Kyung+Min&rft.au=Na%2C+Kyungsu&rft.au=Somorjai%2C+Gabor+A&rft.au=Yaghi%2C+Omar+M&rft.date=2015-06-24&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=137&rft.issue=24&rft.spage=7810&rft_id=info:doi/10.1021%2Fjacs.5b03540&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |